26 research outputs found

    Tool Wear and its Effect on Residual Tensile Strength in Drilling of Quartz Cyanate Ester Polymeric Composite

    Get PDF
    Quartz-Fibre-Reinforced cyanate ester Plastics (QFRP) has superior performance in terms of mechanical, electromagnetic properties and are being widely used in military applications. Drilling is the general machining process for making hole to join the composite part to another sub-assembly. This study presents an influence of optimized drilling parameters on carbide tool wear and its impact on hole characteristics in QFRP composite. The aim is to achieve the optimum use of drill during the drilling process from application perspective without compromising the quality. In addition, the effect of tool wear and its impact on residual tensile strength of quartz composite are studied. The dominant wear mechanism observed is flank wear caused by the abrasive nature of the quartz fibre. The tool wear and delamination factor after drilling 200 holes are 186 µm and 1.40 respectively. The residual strength is affected by the tool wear due to relatively poor interlaminar property between fiber and resin in this quartz composite. The residual strength of quartz specimen drilled with the tool after drilling 200 holes is 14 % lower than the property of specimen drilled with fresh drill. The highlight of the present work is a combined analysis of wear in the tool, delamination induced and residual strength of quartz specimen. The results of this study strengthen the understanding of the drilling process of quartz polymeric composite material in aerospace applications

    Experimental Studies of Resin Systems for Ablative Thermal Protection System

    Get PDF
    The present work was initiated to finalise resin for the development of thermal protection system (TPS) for the external surface of a polymeric composite rocket motor case made up of Carbon roving and Epoxy resin. The temperature on the outer surface of the composite case increases due to kinetic heating caused by aerodynamic drag and vehicle velocity. These rocket motor casings are functionally required only in the ascent phase of missile trajectory till motor action time and stage separation. Due to which the experienced heat flux is relatively less, and the temperature on the external composite case is in order of 250 °C - 300 °C depending on missile configuration and trajectory, unlike extreme thermal conditions on ablative nozzle liners exposed to rocket motor exhaust. The maximum allowable temperature in the present study for the Carbon-Epoxy case is 100 °C due to degradation in mechanical properties. The thermal protection system on the external surface will function as a heat-insulating layer based on the working mechanism of ablation. The resin of the thermal protection layer has a substantial impact on the manufacturing process and curing aspects, especially compatibility with the pre-cured carbon epoxy case layer. The generation of test results for thermal stability, cure characteristics and Tg for Epoxy resin has also been included in present studies as an additional objective that provides significant inputs for process development. The test results for Epoxy resin is also used as a basis for the finalisation of resin for the thermal protection layer for processing aspects apart from its basic thermal stability characteristics. The ablative thermal protection working mechanism is based on the ablation phenomenon. In the case of ablation, resin plays a vital role due to pyrolysis and other thermal characteristics. In the present experimental studies, the Phenolic resin and Silicone resin are considered as candidate resin materials for ablative thermal protection system based on available literature and in house experience. The main objective of the present studies is to evaluate thermal stability, char yield after final decomposition through DSC and TGA techniques for both resins as these are fundamental characteristics needed for the present specific application. The test results for specific grades (formulation) of phenolic and Silicone resins are generated and compared. In the present work, the experimental studies to evaluate glass transition temperature (Tg), thermal stability, and cure characteristics for Epoxy resin is also carried through DSC. The test results of specific grade Epoxy resin provides a basis to assess thermal margins for resins selected for ablative thermal protection system and inputs for process development and design requirements. The scope of the present studies is aimed to finalise the resin system for external thermal protection of composite rocket motor case based on thermal characteristics test results and other compatibility aspects with the structural layer

    Experimental Evaluation of Strength Degradation Temperature for Carbon Epoxy Filament Wound Composite

    Get PDF
    Polymeric composites have been widely used in various structural and thermal aerospace applications. Polymeric composites having high strength and high modulus reinforcement are ideally suited for lot of critical aerospace applications as structure is designed with high specific strength and high specific modulus. In case of launch vehicles/ missile one such application is design and manufacturing of solid rocket motor casing with polymeric composites as it give high performance and reduces inert weight of propulsion system. The high specific strength and high specific modulus of composite materials makes it ideal choice for designing the composite rocket motor case (CRMC). These are manufactured with filament winding process. As per ASTM D 2290 test method, the apparent tensile strength can be evaluated by preparing ring specimens from filament wound shell which simulates the hoop winding and cylindrical geometry of composite motor case. During flight in trajectory, the temperature on external surface of rocket motor will rise due to kinetic heating as result of aerodynamic drag. The mechanical properties of FRP composites degrades beyond certain temperature, depending primarily upon resin system and its glass transition temperature (Tg). In present work, the method of ring fabrication using filament winding is used to prepare test samples to experimentally test and evaluate apparent tensile strength with temperature of Carbon Epoxy composite. The tensile test at ambient is also done on specimens made from carbon Epoxy laminate using filament winding technique and are compared with ring test results.. The Glass Transition temperature (Tg) for Carbon Epoxy is also determined with Dry Scanning Calorimetry (DSC) techniqu

    HIV-1 gp120 Induces Expression of IL-6 through a Nuclear Factor-Kappa B-Dependent Mechanism: Suppression by gp120 Specific Small Interfering RNA

    Get PDF
    In addition to its role in virus entry, HIV-1 gp120 has also been implicated in HIV-associated neurocognitive disorders. However, the mechanism(s) responsible for gp120-mediated neuroinflammation remain undefined. In view of increased levels of IL-6 in HIV-positive individuals with neurological manifestations, we sought to address whether gp120 is involved in IL-6 over-expression in astrocytes. Transfection of a human astrocyte cell line with a plasmid encoding gp120 resulted in increased expression of IL-6 at the levels of mRNA and protein by 51.3±2.1 and 11.6±2.2 fold respectively; this effect of gp120 on IL-6 expression was also demonstrated using primary human fetal astrocytes. A similar effect on IL-6 expression was observed when primary astrocytes were treated with gp120 protein derived from different strains of X4 and R5 tropic HIV-1. The induction of IL-6 could be abrogated by use of gp120-specific siRNA. Furthermore, this study showed that the NF-κB pathway is involved in gp120-mediated IL-6 over-expression, as IKK-2 and IKKβ inhibitors inhibited IL-6 expression by 56.5% and 60.8%, respectively. These results were also confirmed through the use of NF-κB specific siRNA. We also showed that gp120 could increase the phosphorylation of IκBα. Furthermore, gp120 transfection in the SVGA cells increased translocation of NF-κB from cytoplasm to nucleus. These results demonstrate that HIV-1 gp120-mediated over-expression of IL-6 in astrocytes is one mechanism responsible for neuroinflammation in HIV-infected individuals and this is mediated by the NF-κB pathway

    Not Available

    No full text
    Not AvailableMallika variety of mango (Mangifera indica L.) can, be effectively utilized for preparing beverages in the form of nectar and mango bar. Present study was undertaken to develop low cost mango nectar and bar.Not Availabl

    Pyrene Excimer-Based Peptidyl Chemosensors for the Sensitive Detection of Low Levels of Heparin in 100% Aqueous Solutions and Serum Samples

    No full text
    Fluorescent chemosensors (<b>1</b> and <b>2</b>, Py–(Arg)<sub><i>n</i></sub>GlyGlyGly­(Arg)<sub><i>n</i></sub>Lys­(Py)–NH<sub>2</sub>, <i>n</i> = 2 and 3) bearing two pyrene (Py) labeled heparin-binding peptides were synthesized for the sensitive ratiometric detection of heparin. The peptidyl chemosensors (<b>1</b> and <b>2)</b> sensitively detected nanomolar concentrations of heparin in aqueous solutions and in serum samples via a ratiometric response. In 100% aqueous solutions at pH 7.4, both chemosensors exhibited significant excimer emission at 486 nm as well as weak monomer emission in the absence of heparin. Upon the addition of heparin into the solution, excimer emission increased with a blue shift (10 nm) and monomer emission at 376 nm decreased. The chemosensors showed a similar sensitive ratiometric response to heparin independent of the concentration of the chemosensors. The peptidyl chemosensors were applied to the ratiometric detection of heparin over a wide range of pH (1.5–11.5) using the excimer/momomer emission changes. In the presence of serum, <b>1</b> and <b>2</b> displayed significant monomer emission at 376 nm with relatively weak excimer emission and the addition of heparin induced a significant increase in excimer emission at 480 nm and a concomitant decrease in monomer emission. The enhanced ratiometric response to heparin in the serum sample was due to the interactions between the peptidyl chemosensors and serum albumin in the serum sample. The detection limits of <b>2</b> for heparin were less than 1 nM in 100% aqueous solutions and serum samples. The peptidyl chemosensors bearing two heparin-binding sites are a suitable tool for the sensitive ratiometric detection of nanomolar concentrations of heparin in 100% aqueous solutions and serum samples
    corecore