28 research outputs found

    The role of HECT type ubiquitin E3 ligases WWP1 and WWP2 in nerve cell development and function

    Get PDF

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders

    GLOBAL MAPPING PROJECT – APPLICATIONS AND DEVELOPMENT OF VERSION 2 DATASET

    No full text
    The Global Mapping Project aims to develop basic geospatial information of the whole land area of the globe, named Global Map, through the cooperation of National Mapping Organizations (NMOs) around the world. The Global Map data can be a base of global geospatial infrastructure and is composed of eight layers: Boundaries, Drainage, Transportation, Population Centers, Elevation, Land Use, Land Cover and Vegetation. The Global Map Version 1 was released in 2008, and the Version 2 will be released in 2013 as the data are to be updated every five years. In 2009, the International Steering Committee for Global Mapping (ISCGM) adopted new Specifications to develop the Global Map Version 2 with a change of its format so that it is compatible with the international standards, namely ISO 19136 and ISO 19115. With the support of the secretariat of ISCGM, the project participating countries are accelerating their data development toward the completion of the global coverage in 2013, while some countries have already released their Global Map version 2 datasets since 2010. Global Map data are available from the Internet free of charge for non-commercial purposes, which can be used to predict, assess, prepare for and cope with global issues by combining with other spatial data. There are a lot of Global Map applications in various fields, and further utilization of Global Map is expected. This paper summarises the activities toward the development of the Global Map Version 2 as well as some examples of the Global Map applications in various fields

    A Familial Mutation Renders Atrial Natriuretic Peptide Resistant to Proteolytic Degradation*

    No full text
    A heterozygous frameshift mutation causing a 12-amino acid extension to the C terminus of atrial natriuretic peptide (ANP) was recently genetically linked to patients with familial atrial fibrillation (Hodgson-Zingman, D. M., Karst, M. L., Zingman, L. V., Heublein, D. M., Darbar, D., Herron, K. J., Ballew, J. D., de Andrade, M., Burnett, J. C., Jr., and Olson, T. M. (2008) N. Engl. J. Med. 359, 158–165). The frameshift product (fsANP), but not wild-type ANP (wtANP), was elevated in the serum of affected patients, but the molecular basis for the elevated peptide concentrations was not determined. Here, we measured the ability of fsANP to interact with natriuretic peptide receptors and to be proteolytically degraded. fsANP and wtANP bound and activated human NPR-A and NPR-C similarly, whereas fsANP had a slightly increased efficacy for human NPR-B. Proteolytic susceptibility was addressed with novel bioassays that measure the time required for kidney membranes or purified neutral endopeptidase to abolish ANP-dependent activation of NPR-A. The half-life of fsANP was markedly greater than that of wtANP in both assays. Additional membrane proteolysis studies indicated that wtANP and fsANP are preferentially degraded by neutral endopeptidase and serine peptidases, respectively. These data indicate that the familial ANP mutation associated with atrial fibrillation has only minor effects on natriuretic peptide receptor interactions but markedly modifies peptide proteolysis

    Polarity acquisition in cortical neurons is driven by synergistic action of Sox9-regulated Wwp1 and Wwp2 E3 ubiquitin ligases and intronic miR-140

    No full text
    The establishment of axon-dendrite polarity is fundamental for radial migration of neurons during cortex development of mammals. We demonstrate that the E3 ubiquitin ligases WW-Containing Proteins 1 and 2 (Wwp1 and Wwp2) are indispensable for proper polarization of developing neurons. We show that knockout of Wwp1 and Wwp2 results in defects in axon-dendrite polarity in pyramidal neurons, and their aberrant laminar cortical distribution. Knockout of miR-140, encoded in Wwp2 intron, engenders phenotypic changes analogous to those upon Wwp1 and Wwp2 deletion. Intriguingly, transcription of the Wwp1 and Wwp2/miR-140 loci in neurons is induced by the transcription factor Sox9. Finally, we provide evidence that miR-140 supervises the establishment of axon-dendrite polarity through repression of Fyn kinase mRNA. Our data delineate a novel regulatory pathway that involves Sox9-[Wwp1/Wwp2/miR-140]-Fyn required for axon specification, acquisition of pyramidal morphology, and proper laminar distribution of cortical neurons

    Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling

    Get PDF
    Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling
    corecore