21 research outputs found

    Ameloblastoma cell lines derived from different subtypes demonstrate distinct developmental patterns in a novel animal experimental model

    Get PDF
    Objective: Ameloblastoma is a representative odontogenic tumor comprising several characteristic invasive forms, and its pathophysiology has not been sufficiently elucidated. A stable animal experimental model using immortalized cell lines is crucial to explain the factors causing differences among the subtypes of ameloblastoma, but this model has not yet been disclosed. In this study, a novel animal experimental model has been established, using immortalized human ameloblastoma-derived cell lines. Methodology: Ameloblastoma cells suspended in Matrigel were subcutaneously transplanted into the heads of immunodeficient mice. Two immortalized human ameloblastoma cell lines were used: AM-1 cells derived from the plexiform type and AM-3 cells derived from the follicular type. The tissues were evaluated histologically 30, 60, and 90 days after transplantation. Results: Tumor masses formed in all transplanted mice. In addition, the tumors formed in each group transplanted with different ameloblastoma cells were histologically distinct: the tumors in the group transplanted with AM-1 cells were similar to the plexiform type, and those in the group transplanted with AM-3-cells were similar to the follicular type. Conclusions: A novel, stable animal experimental model of ameloblastoma was established using two cell lines derived from different subtypes of the tumor. This model can help clarify its pathophysiology and hasten the development of new ameloblastoma treatment strategies

    BTK isoforms p80 and p65 are expressed in head and neck squamous cell carcinoma (HNSCC) and involved in tumor progression

    Get PDF
    Here, we describe the expression of Bruton’s Tyrosine Kinase (BTK) in head and neck squamous cell carcinoma (HNSCC) cell lines as well as in primary HNSCC samples. BTK is a kinase initially thought to be expressed exclusively in cells of hematopoietic origin. Apart from the 77 kDa BTK isoform expressed in immune cells, particularly in B cells, we identified the 80 kDa and 65 kDa BTK isoforms in HNSCC, recently described as oncogenic. Importantly, we revealed that both isoforms are products of the same mRNA. By investigating the mechanism regulating oncogenic BTK-p80/p65 expression in HNSSC versus healthy or benign tissues, our data suggests that the epigenetic process of methylation might be responsible for the initiation of BTK-p80/p65 expression in HNSCC. Our findings demonstrate that chemical or genetic abrogation of BTK activity leads to inhibition of tumor progression in terms of proliferation and vascularization in vitro and in vivo. These observations were associated with cell cycle arrest and increased apoptosis and autophagy. Together, these data indicate BTK-p80 and BTK-p65 as novel HNSCC-associated oncogenes. Owing to the fact that abundant BTK expression is a characteristic feature of primary and metastatic HNSCC, targeting BTK activity appears as a promising therapeutic option for HNSCC patients

    RalGDSを介する低分子量G蛋白質Rasのシグナル伝達機構による細胞機能制御

    Get PDF
    研究期間:平成11-12年度 ; 研究種目:基盤研究B2 ; 課題番号:1147004

    A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins.

    No full text
    The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s). While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4)P) levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4)P in membranes. To determine whether VPS13A affects PtdIns(4)P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4)P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4)P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals

    Localization of PtdIns(4)P, PtdIns(4,5)P2 or PtdIns(3,4,5)P3 in PC12 cells carrying scrambled shRNA or <i>VPS13A</i> knockdown shRNA.

    No full text
    <p>PC12 cells were transiently co-transfected with GFP tagged PH domains and vectors expressing either a control, scrambled shRNA or <i>VPS13A</i> shRNA3. Red fluorescence indicates the presence of the shRNA vector. For each sensor, the percentage of knockdown cells in which the sensor was localized at the plasma membrane and the number (n) of cells scored are shown. The data are pooled from three experiments for the PtdIns(4)P and PtdIns(4,5)P<sub>2</sub> sensor and two experiments for the PtdIns(3,4,5)P<sub>3</sub> sensor. In <i>VPS13A</i> knockdown cells, three patterns of localization for the PtdIns(4)P sensor are seen: class I are similar to the control cells (indicated by “I”); class IIa are lacking in plasma membrane fluorescence but have clear Golgi and nuclear fluorescence (IIa); and class IIb show diffuse fluorescence throughout the cell (IIb). Yellow arrows indicate the plasma membrane. White arrowheads indicate Golgi elements. N = nucleus. Scale bars = 5μm.</p
    corecore