1,806 research outputs found

    Magnetic switching by spin torque from the spin Hall effect

    Full text link
    The spin Hall effect (SHE) generates spin currents within nonmagnetic materials. Previously, studies of the SHE have been motivated primarily to understand its fundamental origin and magnitude. Here we demonstrate, using measurement and modeling, that in a Pt/Co bilayer with perpendicular magnetic anisotropy the SHE can produce a spin transfer torque that is strong enough to efficiently rotate and reversibly switch the Co magnetization, thereby providing a new strategy both to understand the SHE and to manipulate magnets. We suggest that the SHE torque can have a similarly strong influence on current-driven magnetic domain wall motion in Pt/ferromagnet multilayers. We estimate that in optimized devices the SHE torque can switch magnetic moments using currents comparable to those in magnetic tunnel junctions operated by conventional spin-torque switching, meaning that the SHE can enable magnetic memory and logic devices with similar performance but simpler architecture than the current state of the art

    Estimation of phosphorus emissions in the upper Iguazu basin (Brazil) using GIS and the MoRE Model

    Get PDF
    Pollution emissions into the drainage basin have direct impact on surface water quality. These emissions result from human activities that turn into pollution loads when they reach the water bodies, as point or diffuse sources. Their pollution potential depends on the characteristics and quantity of the transported materials. The estimation of pollution loads can assist decision-making in basin management. Knowledge about the potential pollution sources allows for a prioritization of pollution control policies to achieve the desired water quality. Consequently, it helps avoiding problems such as eutrophication of water bodies. The focus of the research described in this study is related to phosphorus emissions into river basins. The study area is the upper Iguazu basin that lies in the northeast region of the State of Paraná, Brazil, covering about 2,965 km² and around 4 million inhabitants live concentrated on just 16% of its area. The MoRE (Modeling of Regionalized Emissions) model was used to estimate phosphorus emissions. MoRE is a model that uses empirical approaches to model processes in analytical units, capable of using spatially distributed parameters, covering both, emissions from point sources as well as non-point sources. In order to model the processes, the basin was divided into 152 analytical units with an average size of 20 km². Available data was organized in a GIS environment. Using e.g. layers of precipitation, the Digital Terrain Model from a 1:10000 scale map as well as soils and land cover, which were derived from remote sensing imagery. Further data is used, such as point pollution discharges and statistical socio-economic data. The model shows that one of the main pollution sources in the upper Iguazu basin is the domestic sewage that enters the river as point source (effluents of treatment stations) and/or as diffuse pollution, caused by failures of sanitary sewer systems or clandestine sewer discharges, accounting for about 56% of the emissions. Second significant shares of emissions come from direct runoff or groundwater, being responsible for 32% of the total emissions. Finally, agricultural erosion and industry pathways represent 12% of emissions. This study shows that MoRE is capable of producing valid emission calculation on a relatively reduced input data basis

    LL5β: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction

    Get PDF
    In both neurons and muscle fibers, specific mRNAs are concentrated beneath and locally translated at synaptic sites. At the skeletal neuromuscular junction, all synaptic RNAs identified to date encode synaptic components. Using microarrays, we compared RNAs in synapse-rich and -free regions of muscles, thereby identifying transcripts that are enriched near synapses and that encode soluble membrane and nuclear proteins. One gene product, LL5β, binds to both phosphoinositides and a cytoskeletal protein, filamin, one form of which is concentrated at synaptic sites. LL5β is itself associated with the cytoplasmic face of the postsynaptic membrane; its highest levels border regions of highest acetylcholine receptor (AChR) density, which suggests a role in “corraling” AChRs. Consistent with this idea, perturbing LL5β expression in myotubes inhibits AChR aggregation. Thus, a strategy designed to identify novel synaptic components led to identification of a protein required for assembly of the postsynaptic apparatus

    Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    Get PDF
    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere

    Modified Spin Wave Thoery of the Bilayer Square Lattice Frustrated Quantum Heisenberg Antiferromagnet

    Full text link
    The ground state of the square lattice bilayer quantum antiferromagnet with nearest and next-nearest neighbour intralayer interaction is studied by means of the modified spin wave method. For weak interlayer coupling, the ground state is found to be always magnetically ordered while the quantum disordered phase appear for large enough interlayer coupling. The properties of the disordered phase vary according to the strength of the frustration. In the regime of weak frustration, the disordered ground state is an almost uncorrelated assembly of interlayer dimers, while in the strongly frustrated regime the quantum spin liquid phase which has considerable N\'eel type short range order appears. The behavior of the sublattice magnetization and spin-spin correlation length in each phase is discussed.Comment: 15 pages, revtex, figures upon reques

    Assessment of Phosphorus Input from Urban Areas in the Passaúna River and Reservoir

    Get PDF
    Elevated phosphorus loads play an important role in the deterioration of water quality and can subsequently pose a threat to the aquatic organisms in a river or a standing water body. The accurate assessment of total phosphorus (TP) fluxes from a catchment is of high importance to the well-being of the entire river ecosystem. In this study, we assessed the yearly input of TP from the urban areas of the Passaúna catchment in southern Brazil. The catchment drains into the eponymous reservoir, which provides drinking water for more than 800,000 inhabitants of the Curitiba Metropolitan region. The protection of the water quality in the river as well as in the reservoir is of paramount importance, yet high phosphorous inputs have been detected. For adequate protection, the catchment emissions need to be accurately assessed. Initially, the TP concentration in the river sediment was determined in order to assess the relationship between the TP export of the urban areas and the TP stock of the river. It was found that in areas with a higher share of urban land cover and especially in areas with a lack of sewage treatment, the TP concentration in the sediment reached up to 6700 mg/kg. The assessment of the overall TP input from urban areas was based on a regionalized emission-modeling approach, combined with data from long-term water quality monitoring of the river. The monitoring station established upstream of the Passaúna Reservoir inflow provided an initial assessment and the necessary output for the validation and calibration of the model. From the drainage basin of the monitoring station, an overall TP input of 2501 kg/a (0.31 kg/(ha a)) was measured between 1 May 2018 and 1 May 2019 (3508 kg TP/a or 0.23 kg/(ha a) when extrapolating the overall catchment of the Passaúna Reservoir). The monitoring data indicated that the TP input increases during the wet months of the year. The sediment stock of the river also plays an important role in the interannual budget of TP. During the timespan of one year, many deposition–resuspension events happen. The resuspended material is included in the baseflow and hinders the differentiation between urban and nonurban input. After calibration, the model was able to predict the yearly input of TP from the urban areas of the Passaúna catchment. In addition, the share of inhabitants who are not connected to the sewer system was assessed. Overall, the combination of monitoring and modeling in this study offers a valuable overview of the TP dynamics of the system, while the model ensures reproducibility with high accuracy at the same time

    Effect of hydrogen on ground state structures of small silicon clusters

    Full text link
    We present results for ground state structures of small Sin_{n}H (2 \leq \emph{n} \leq 10) clusters using the Car-Parrinello molecular dynamics. In particular, we focus on how the addition of a hydrogen atom affects the ground state geometry, total energy and the first excited electronic level gap of an Sin_{n} cluster. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen bonds with two silicon atoms only in Si2_{2}H, Si3_{3}H and Si5_{5}H clusters, while in other clusters (i.e. Si4_{4}H, Si6_{6}H, Si7_{7}H, Si8_{8}H, Si9_{9}H and Si10_{10}H) hydrogen is bonded to only one silicon atom. Also in the case of a compact and closed silicon cluster hydrogen bonds to the cluster from outside. We find that the first excited electronic level gap of Sin_{n} and Sin_{n}H fluctuates as a function of size and this may provide a first principles basis for the short-range potential fluctuations in hydrogenated amorphous silicon. Our results show that the addition of a single hydrogen can cause large changes in the electronic structure of a silicon cluster, though the geometry is not much affected. Our calculation of the lowest energy fragmentation products of Sin_{n}H clusters shows that hydrogen is easily removed from Sin_{n}H clusters.Comment: one latex file named script.tex including table and figure caption. Six postscript figure files. figure_1a.ps and figure_1b.ps are files representing Fig. 1 in the main tex
    corecore