62 research outputs found

    Role of imaging in progressive-fibrosing interstitial lung diseases

    Get PDF
    Imaging techniques are an essential component of the diagnostic process for interstitial lung diseases (ILDs). Chest radiography is frequently the initial indicator of an ILD, and comparison of radiographs taken at different time points can show the rate of disease progression. However, radiography provides only limited specificity and sensitivity and is primarily used to rule out other diseases, such as left heart failure. High-resolution computed tomography (HRCT) is a more sensitive method and is considered central in the diagnosis of ILDs. Abnormalities observed on HRCT can help identify specific ILDs. HRCT also can be used to evaluate the patient's prognosis, while disease progression can be assessed through serial imaging. Other imaging techniques such as positron emission tomography-computed tomography and magnetic resonance imaging have been investigated, but they are not commonly used to assess patients with ILDs. Disease severity may potentially be estimated using quantitative methods, as well as visual analysis of images. For example, comprehensive assessment of disease staging and progression in patients with ILDs requires visual analysis of pulmonary features that can be performed in parallel with quantitative analysis of the extent of fibrosis. New approaches to image analysis, including the application of machine learning, are being developed

    Immunohistochemical Detection of Propionibacterium acnes in Granulomas for Differentiating Sarcoidosis from Other Granulomatous Diseases Utilizing an Automated System with a Commercially Available PAB Antibody

    Get PDF
    Propionibacterium acnes is implicated in the pathogenesis of sarcoidosis. We investigated the usefulness of immunohistochemistry (IHC) with a commercially available P. acnes-specific monoclonal antibody (PAB antibody) for differentiating sarcoidosis from other granulomatous diseases. Formalin-fixed paraffin-embedded tissue samples from 94 sarcoidosis patients and 30 control patients with other granulomatous diseases were examined by the original manual IHC method. We also compared the detection frequency of P. acnes in sarcoid granulomas between manual and automated IHC methods. P. acnes was detected in sarcoid granulomas of samples obtained by transbronchial lung biopsy (64%), video-associated thoracic surgery (67%), endobronchial-ultrasound-guided transbronchial-needle aspiration (32%), lymph node biopsy (80%), and skin biopsy (80%) from sarcoidosis patients, but not in any non-sarcoid granulomas of the samples obtained from control patients. P. acnes outside granulomas, however, was frequently detected in both groups. The detection status of P. acnes in granulomas did not correlate with the clinical characteristics of sarcoidosis patients. The automated Leica system exhibited the best detection sensitivity (72%) and almost an identical localization for P. acnes in sarcoid granulomas compared with the manual method. IHC with a PAB antibody is useful for differentiating sarcoidosis from other granulomatous diseases by detecting P. acnes in granulomas. An automated method by the Leica system can be used in pathology laboratories for differential diagnosis of granulomas by IHC with the PAB antibody

    First-line pembrolizumab vs chemotherapy in metastatic non-small-cell lung cancer: KEYNOTE-024 Japan subset

    Get PDF
    This prespecified subanalysis of the global, randomized controlled phase Ill KEYNOTE-024 study of pembrolizumab vs chemotherapy in previously untreated metastatic non-small-cell lung cancer without EGFR/ALK alterations and a programmed death-ligand 1 (PD-L1) tumor proportion score of 50% or greater evaluated clinical outcomes among patients enrolled in Japan. Treatment consisted of pembrolizumab 200 mg every 3 weeks (35 cycles) or platinum-based chemotherapy (four to six cycles). The primary end-point was progression-free survival; secondary end-points included overall survival and safety. Of 305 patients randomized in KEYNOTE-024 overall, 40 patients were enrolled in Japan (all received treatment: pembrolizumab, n = 21; chemotherapy, n = 19). The hazard ratio (HR) for progression-free survival by independent central review (data cut-off date, 10 July 2017) was 0.25 (95% confidence interval [CI], 0.10-0.64; one-sided, nominal P = .001). The HR for overall survival (data cut-off date, 15 February 2019) was 0.39 (95% CI, 0.17-0.91; one-sided, nominal P = .012). Treatment-related adverse events occurred in 21/21 (100%) pembrolizumab-treated and 18/19 (95%) chemotherapy-treated patients; eight patients (38%) and nine patients (47%), respectively, had grade 3-5 events. Immune-mediated adverse events and infusion reactions occurred in 11 patients (52%) and four patients (21%), respectively; four patients (19%) and one patient (5%), respectively, had grade 3-5 events. Consistent with results from KEYNOTE-024 overall, first-line pembrolizumab improved progression-free survival and overall survival vs chemotherapy with manageable safety among Japanese patients with metastatic non-small-cell lung cancer without EGFRIALK alterations and a PD-L1 tumor proportion score of 50% or greater

    First-line pembrolizumab vs chemotherapy in metastatic non-small-cell lung cancer: KEYNOTE-024 Japan subset

    Get PDF
    This prespecified subanalysis of the global, randomized controlled phase III KEYNOTE‐024 study of pembrolizumab vs chemotherapy in previously untreated metastatic non‐small‐cell lung cancer without EGFR/ALK alterations and a programmed death ligand 1 (PD‐L1) tumor proportion score of 50% or higher evaluated clinical outcomes among patients enrolled in Japan. Treatment consisted of pembrolizumab 200 mg every 3 weeks (35 cycles) or platinum‐based chemotherapy (four to six cycles). The primary end‐point was progression‐free survival; secondary end‐points included overall survival and safety. Of 305 patients randomized in KEYNOTE‐024 overall, 40 patients were enrolled in Japan (all received treatment: pembrolizumab, n = 21; chemotherapy, n = 19). Median progression‐free survival was 41.4 (95% confidence interval [CI], 4.2‐42.5) months with pembrolizumab and 4.1 (95% CI, 2.8‐8.3) months with chemotherapy (hazard ratio [HR], 0.27 [95% CI, 0.11‐0.65]; one‐sided, nominal P = .001). Median overall survival was not reached (NR) (95% CI, 22.9‒NR) and 21.5 (95% CI, 5.2‐35.0) months, respectively (HR, 0.39 [95% CI, 0.17‐0.91]; one‐sided, nominal P = .012). Treatment‐related adverse events occurred in 21/21 (100%) pembrolizumab‐treated and 18/19 (95%) chemotherapy‐treated patients; eight patients (38%) and nine patients (47%), respectively, had grade 3‐5 events. Immune‐mediated adverse events and infusion reactions occurred in 11 pembrolizumab‐treated patients (52%) and four chemotherapy‐treated patients (21%), respectively; four patients (19%) and one patient (5%), respectively, had grade 3‐5 events. Consistent with results from KEYNOTE‐024 overall, first‐line pembrolizumab improved progression‐free survival and overall survival vs chemotherapy with manageable safety among Japanese patients with metastatic non‐small‐cell lung cancer without EGFR/ALK alterations and a PD‐L1 tumor proportion score of 50% or higher. The trial is registered with Clinicaltrials.gov: NCT02142738

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Bayesian parametric estimation based on left-truncated competing risks data under bivariate Clayton copula models

    No full text
    In observational/field studies, competing risks and left-truncation may co-exist, yielding ‘left-truncated competing risks’ settings. Under the assumption of independent competing risks, parametric estimation methods were developed for left-truncated competing risks data. However, competing risks may be dependent in real applications. In this paper, we propose a Bayesian estimator for both independent competing risks and copula-based dependent competing risks models under left-truncation. The simulations show that the Bayesian estimator for the copula-based dependent risks model yields the desired performance when competing risks are dependent. We also comprehensively explore the choice of the prior distributions (Gamma, Inverse-Gamma, Uniform, half Normal and half Cauchy) and hyperparameters via simulations. Finally, two real datasets are analyzed to demonstrate the proposed estimators.</p
    corecore