99 research outputs found

    Matrix density effects on the mechanical properties of SiC/RBSN composites

    Get PDF
    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed

    Ceramics for engines

    Get PDF
    The NASA Lewis Research Center's Ceramic Technology Program is focused on aerospace propulsion and power needs. Thus, emphasis is on high-temperature ceramics and their structural and environmental durability and reliability. The program is interdisciplinary in nature with major emphasis on materials and processing, but with significant efforts in design methodology and life prediction

    Ceramics for engines

    Get PDF
    Structural ceramics were under nearly continuous development for various heat engine applications since the early 1970s. These efforts were sustained by the properties that ceramics offer in the areas of high-temperature strength, environmental resistance, and low density and the large benefits in system efficiency and performance that can result. The promise of ceramics was not realized because their brittle nature results in high sensitivity to microscopic flaws and catastrophic fracture behavior. This translated into low reliability for ceramic components and thus limited their application in engines. For structural ceramics to successfully make inroads into the terrestrial heat engine market requires further advances in low cost, net shape fabrication of high reliability components, and improvements in properties such as toughness, and strength. These advances will lead to very limited use of ceramics in noncritical applications in aerospace engines. For critical aerospace applications, an additional requirement is that the components display markedly improved toughness and noncatastrophic or graceful fracture. Thus the major emphasis is on fiber-reinforced ceramics

    A sintering model for SiC(sub)w/Si3N4 composites

    Get PDF
    Presented is a model which suggests that it should be possible to pressureless sinter a SiC(sub w)/ Si3N4 composite to theoretical density. Prior failure to achieve complete densification by sintering is attributed to the use of compositions which result in a glass deficit. There is one basic premise for this model. The ratio of glass amount to surface area of nonglass constituents must be the same for both composite and sinterable monolithic Si3N4. This model suggests that whisker and grain sizes and whisker loading influence the glass amount necessary for successful sintering of composites. According to the model, a large glass amount will be necessary for successful sintering of these composites. However, grain boundary thicknesses in the composite will be less than those in the analogous monolithic materials. This suggests that good high temperature strength may still be attained. A recent report supports the predictions of the model

    Slurry-pressing consolidation of silicon nitride

    Get PDF
    A baseline slurry-pressing method for a silicon nitride material is developed. The Si3N4 composition contained 5.8 wt percent SiO2 and 6.4 wt percent Y2O3. Slurry-pressing variables included volume percent solids, application of ultrasonic energy, and pH. Twenty vol percent slurry-pressed material was approximately 11 percent stronger than both 30 vol percent slurry-pressed and dry-pressed materials. The Student's t-test showed the difference to be significant at the 99 percent confidence level. Twenty volume percent (300 h) slurry-pressed test bars exhibited strengths as high as 980 MPa. Large, columnar beta-Si3N4 grains caused failure in the highest strength specimens. The improved strength correlated with better structural uniformity as determined by radiography, optical microscopy, and image analysis

    High frequency ultrasonic characterization of sintered SiC

    Get PDF
    High frequency (60 to 160 MHz) ultrasonic nondestructive evaluation was used to characterize variations in density and microstructural constituents of sintered SiC bars. Ultrasonic characterization methods included longitudinal velocity, reflection coefficient, and precise attenuation measurements. The SiC bars were tailored to provide bulk densities ranging from 90 to 98 percent of theoretical, average grain sizes ranging from 3.0 to 12.0 microns, and average pore sizes ranging from 1.5 to 4.0 microns. Velocity correlated with specimen bulk density irrespective of specimen average grain size, average pore size, and average pore orientation. Attenuation coefficient was found to be sensitive to both density and average pore size variations, but was not affected by large differences in average grain size

    Acoustic Emission and Damage Accumulation for Various Woven C/SiC Composites Tested in Tension at Room Temperature

    Get PDF
    Modal acoustic emission (AE) has proven to be an excellent technique to monitor damage accumulation in ceramic matrix composites. In this study, AE was used to monitor tensile load-unload-reload hysteresis tests for a variety of C fiber reinforced, Sic matrix composites. C/SiC composites were reinforced with T-300 and IM7 fibers, had C, multilayer, or pseudo-porous C interphases, and had chemical vapor infiltrated Sic or melt-infiltrated SiC matrices. All of the composites exhibited considerable AE during testing. The extent and nature of the AE activity will be analyzed and discussed in light of matrix cracking and the variety of composite constituents. It is hoped that understanding the nature of stress-dependent damage accumulation in these materials can be of use in life-modeling for these types of composites

    Acoustic Liners for Turbine Engines

    Get PDF
    An improved acoustic liner for turbine engines is disclosed. The acoustic liner may include a straight cell section including a plurality of cells with straight chambers. The acoustic liner may also include a bent cell section including one or more cells that are bent to extend chamber length without increasing the overall height of the acoustic liner by the entire chamber length. In some cases, holes are placed between cell chambers in addition to bending the cells, or instead of bending the cells

    Summer Food Habits of \u3ci\u3eMyotis leibii\u3c/i\u3e in the Central Appalachians Ecoregion and Comparison to Similar Studies

    Get PDF
    Food habits of Myotis leibii, Eastern Small-footed Myotis, were studied during summer in the Central Appalachians Ecoregion. Moths were 70.0% of the diet by volume and were in 97.7% of samples (percent frequency). Beetles, flies, and spiders comprised much of the remaining diet. Percent volume and percent frequency metrics produce similar results. These data and past studies indicate this bat eats a relatively low-diversity diet centered on terrestrial-based arthropod prey across a broad geographical area, irrespective of season, sex, or age. The presence of spiders in the diet may indicate gleaning

    Crack opening behavior in ceramic matrix composites

    Full text link
    The evolution of matrix cracks in a melt‐infiltrated SiC/SiC ceramic matrix composite (CMC) under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. CMC modeling and life prediction strongly depend a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time‐temperature‐environment‐stress), and the interactions of matrix cracks with fibers and interfaces. In this work, strain relaxation due to matrix cracking, the relationship between CODs and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross‐section. This calls into question the modeling assumption of through‐cracks for all loading conditions and fiber architectures, which can obscure oxidation mechanisms that are active in realistic cracking conditions. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMCs at stresses well below the proportional limit.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138389/1/jace14976_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138389/2/jace14976.pd
    corecore