A Sintering Model for $\mathrm{SiC}_{\mathrm{w}} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ Composites

(aASA-TG-101336) a simebide rcill fob
siC(SOB)w/Si3n4 C(MEOSIAES (AASA) 19f
CSCL 11C
N89-1C1to
G3/27 \(\begin{aligned} \& Unclas
\& 0168458\end{aligned}\)
Marc R. Freedman, James D. Kiser, and William A. Sanders
Lewis Research Center
Cleveland, Ohio

Presented at the
90th Annual Meeting of the American Ceramic Society Cincinnati, Ohio, May 1-5, 1988

SINTERING MODEL FOR $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ COMPOSITES

Marc R. Freedman, James D. Kiser, and William A. Sanders
National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT
This paper presents a model which suggests that it should be possible to pressureless sinter a $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composite to theoretical density. Prior failure to achieve complete densification by sintering is attributed to the use of compositions which result in a "glass deficit." There is one basic premise for this model. The ratio of glass amount to surface area of nonglass constituents must be the same for both composite and sinterable monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$. This model suggests that whisker and grain sizes and whisker loading influence the glass amount necessary for successful sintering of composites. According to the model, a large glass amount will be necessary for successful sintering of these composites. However, grain boundary thicknesses in the composite will be less than those in the analogous monolithic material. This suggests that good high temperature strength may still be attained. A recent report supports the predictions of the model.

NOMENCLATURE
AgC area percent glass in WTC
AgM area percent glass in monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$
$A_{m C}$ area percent $\mathrm{Si}_{3} \mathrm{~N}_{4}$ matrix in WTC
AmM area percent $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains in monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$
AwC area percent whiskers in WTC
gb_{t} grain boundary thickness(es)
LC total perimeter of nonglass constituents per unit area in WTC

LM total perimeter of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains per unit area in monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ $\mathrm{m} \quad$ side of hexagonal grain cross section $=1 / 2$ grain size
$P_{m} \quad$ perimeter/area ratio of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grain
$P_{W} \quad$ perimeter/area ratio of SiC whisker
$r \quad$ radius of whisker cross section
SiC $_{W}$ silicon carbide whisker(s)
$\mathrm{Si}_{3} \mathrm{~N}_{4}$ silicon nitride
$V_{C} \quad$ ratio of area percent glass/total perimeter of nonglass constituents in WTC
$V_{M} \quad$ ratio of area percent glass/total perimeter of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains in monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$

WTC whisker toughened composite(s)

INTRODUCTION

Addition of silicon carbide whiskers (SiC_{W}) to a $\mathrm{Si}_{3} \mathrm{~N}_{4}$ matrix should result in ceramic composites with good toughness, strength, and creep resistance. The properties of several ceramic matrix materials improved with SiCW addition. 1-5 However, these materials were densified by either hot pressing or "canned" HIP'ing and thus have only limited application.

For complex shaped components densification by sintering or containerless HIP'ing is the more desirable approach. These processes should produce a more isotropic whisker toughened composite (WTC) material than hot pressing. Recently, Tiegs, and Becher ${ }^{6}$ demonstrated improved flexural strength and toughness with pressureless sintered $\mathrm{SiC}_{W} / \mathrm{Al}_{2} \mathrm{O}_{3}$. However, addition of $\mathrm{SiC}_{\mathrm{W}}$ to $\mathrm{Si}_{3} \mathrm{~N}_{4}$ makes it difficult to obtain high density by pressureless sintering. ${ }^{7}$ Compositions that provide excellent sinterable monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ do not completely sinter when used as matrix material in WTC. In WTC, such matrix compositions can only be densified by pressure approaches. 8,9

The glassy grain boundary phase influences the rates of dissolution, diffusion, and redeposition of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ during liquid phase sintering. 10,11 During sintering of WTC, an adequate glass amount is necessary for the rearrangement of both SiC_{W} and $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains. Lange ${ }^{12}$ and Scherer ${ }^{13}$ suggest that whiskers in WTC form a touching network at a relatively low whisker loading. The network would inhibit densification of the composite. Bordia and Rajl4 propose that unrelaxed shear stresses and poor wetting of the whiskers during sintering reduce the sintering rate.

This paper suggests that another possible reason previous attempts to sinter $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composites failed was because the selected composition led to a "glass deficit." This paper presents a simple two-dimensional model which predicts the glass amount required to sinter $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composites to theoretical density. It predicts a larger glass requirement for sintering a WTC than an analogous monolithic material. The extra glass would improve the wetting of the whiskers, aid in pore removal, and provide the whiskers with a medium for rearrangement during sintering. Additional glass may also allow a higher whisker loading without the nonsintering whiskers forming a constraining network. This paper suggests that this glass amount should not be detrimental to the high temperature properties of the material.

In addition, this model provides guidance in producing a WTC with the same grain size, grain boundary thickness ($g b_{t}$), and glass composition as a good monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$. Comparison of these two materials will directly clarify the effect of whisker addition on the properties of $\mathrm{Si}_{3} \mathrm{~N}_{4}$.

SINTERABLE COMPOSITE MODEL
Basis
This section defines the "glass deficit" condition. It shows the effect of a "glass deficit" on sintering of monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ and presents the reason for developing the model.

One method for understanding the important effects caused by whisker additions is to compare idealized microstructures for the monolithic and WTC ceramics. Figure 1 is an idealized two-dimensional representation of a monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ microstructure. $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains are hexagonal and monosized. They are in an hexagonal array and their $g b_{t}$ is uniform. For convenience, the inscribed hexagonal area is the unit cell. The small, crosshatched region is a "grain boundary glass part." There are 3 grains and 9 glass parts per unit cell.

Now consider the current practice of simply replacing a portion of the monolithic starting composition with Si_{W}. As an example, the following describes the formation of a 33 vol \% WTC. Remove one $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grain and its associated glass from the idealized microstructure shown in Fig. 1. Substitute one hexagonal SiC $_{W}$ to make a 33 vol $\%$ WTC. Assume the hexagonal whisker for ease of visualization. A "glass deficit" occurs as shown in Fig. 2. There are now 1 whisker, 2 grains, and 6 glass parts per unit cell (same definition as in Fig. 1). Thus, the volume of glass decreased by $1 / 3$. Clearly, this reduction in glass volume will result in a decrease in average $g b_{t}$ and in the ease of sintering.

In this paper, the baseline sintered monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ is the NASA $6 \mathrm{Y}^{15}$ which contains 6 wt $\% \mathrm{Y}_{2} \mathrm{O}_{3}$. The glassy grain boundary phase occupies 13.11 vol \% of the material. Addition of 33 vol $\% \mathrm{SiCW}$ to a NASA 6 Y matrix reduces the glassy grain boundary amount in the composite to 8.7 vol \%. Figure 3 shows the density of a sintered monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ material as a function of glass amount. The density reduces considerably as the glass amount decreases. The decreased sinterability of the "glass deficit" monolithic material is in part due to diminished dissolution and grain rearrangement during sintering. 16 Similarly, "glass deficit" conditions should prevent
attainment of theoretical density during sintering of a WTC. Therefore, sintering a WTC requires modification of the starting composition.

To sinter a WTC the glass amount must increase and the $\mathrm{Si}_{3} \mathrm{~N}_{4}$ amount must decrease in order to overcome the "glass deficit." Experimental determination of the proper composition of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ powder and glass formers for sintering a WTC to full density is possible. However, it is desirable to be able to calculate the sinterable composition, especially when powder, whisker, and additive characteristics change. The remainder of the paper will develop a simple twodimensional model for selecting a sinterable $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composite composition.

Definitions
There is one basic premise for the sinterable $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composites model. The WTC and sinterable monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ materials must both contain the same ratio of glass amount to surface area of nonglass constituents. Using the same glass composition in the WTC should then provide the same grain boundary characteristics as in the monolithic.

The model includes four factors which influence the gb_{t}. They are $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grain size, $S i C_{W}$ diameter, volume percent $S i C_{W}$ loading, and volume percent glass in the monolithic. For example, Fig. 4 shows the effect of grain size on the calculated gb_{t} for a monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$. The calculations use the monolithic microstructure depicted in Fig. I and assume the NASA 6 Y composition. These calculated values and those used in the remainder of the paper are about an order of magnitude greater than measured gbt. This is because of the idealized two-dimensional representation of monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ used for these calculations. Use of a three-dimensional representation with a grain geometry that allows for glassy triple points would decrease the calculated $g b_{t}$.

For the sintering model, $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains are parallel, monosized hexagonal prisms. The SiC_{W} are parallel, monosized right cylinders. In two-dimensions,
the grain cross sections are hexagons and the whisker cross sections are circles. The hexagons have 6 equal sides of length m and the circles have radii of length r. The ratio of volume percent glass to surface area of nonglass constituents becomes the ratio of area percent glass to perimeter of nonglass constituents. A_{g}, A_{m}, and A_{w} are the area percent glass, area percent $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains, and area percent SiC_{W}, respectively.

For circular whiskers, the ratio of perimeter to area, P_{W}, is equal to $2 \pi r / \pi r^{2}$ or $2 / r$. For the hexagonal $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains, the similar ratio, P_{m}, is equal to $6 \mathrm{~m} /\left[3(3)^{1 / 2} \mathrm{~m}^{2} / 2\right]$ or $4 /\left(3^{1 / 2} \mathrm{~m}\right)$. Thus, the total perimeter of the grains per unit area in the monolithic material, L_{M}, is equal to $P_{m} \times A_{m M}$. For the monolithic, the ratio of area percent glass to total perimeter of nonglass constituents, V_{M}, is equal to $A_{g M} / L_{M}$. In the $W T C, L_{C}$, the total perimeter per unit area, is equal to $P_{m} \times A_{m C}+P_{W} \times A_{W C}$. These products are the total perimeters of the grains and whiskers, respectively. For the $W T C, V_{C}$ is equal to $\mathrm{AgCl}^{\prime} \mathrm{L}_{\mathrm{C}}$.

Model

The ratio of area percent glass to total perimeter of nonglass
constituents must be the same in the WTC as the monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$. This is the basic premise of the model. Thus, V_{M} is equal to V_{C} or $A_{g C} / L_{C}=A_{g M} / L_{M}$, and

$$
\begin{equation*}
A_{g C} /\left(P_{W} \times A_{w C}+P_{m} \times A_{m C}\right)=A_{g M} /\left(P_{m} \times A_{m M}\right) \tag{1}
\end{equation*}
$$

Since

$$
A_{g C}+A_{m C}+A_{W C}=100 \text { percent }
$$

then

$$
\begin{equation*}
A_{m C}=100-A_{g C}-A_{W C} \tag{2}
\end{equation*}
$$

By substituting Eq. (2) for $A_{m C}$ in Eq. (1) and rearranging to solve for $A g C$,

$$
A_{g C}=\left(A_{g M} / 100\right) \times\left[\left(P_{W} / P_{m}\right)-1\right] \times A_{W C}+A_{g M}
$$

Since

$$
P_{W}=2 / r \quad \text { and } \quad P_{m}=4 /\left(3^{1 / 2} \times m\right)
$$

then

$$
\begin{equation*}
A_{g C}=\left(A_{g M} / 100\right) \times\left\{\left[\left(3 \frac{1}{2} \times m\right) /(2 \times r)\right]-i\right\} \times A_{w C}+A_{g M} \tag{3}
\end{equation*}
$$

Thus, knowledge of only four variables is necessary to solve Eq. (3). The four variables are sintered $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grain size, SiC_{W} diameter, volume percent SiC_{W} loading, and volume percent glass in the monolithic.

For example, the NASA $6 Y$ monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ has 13.11 vol \% glass, and a $2 \mu \mathrm{~m}$ average grain size. 15 So, $\mathrm{AgM}_{\mathrm{g}}=13.11$ and $\mathrm{m}=1$. To make a WTC, assume that the $\mathrm{SiC}_{\mathrm{W}}$ loading is 30 vol $\%$ and the whiskers have a $1 \mu \mathrm{~m}$ diameter. Then, $A_{w C}=30$ and $r=0.5$. Applying Eq. (3),

$$
\mathrm{AgC}=(13.11 / 100) \times\left\{\left[\left(3^{1 / 2} \times 1\right) /(2 \times 0.5)\right]-1\right\} \times 30+13.11=15.99
$$

Thus, the composite composition is 15.99 vol $\%$ glass, 54.01 vol $\% \mathrm{Si}_{3} \mathrm{~N}_{4}$, and $30 \mathrm{vol} \% \mathrm{SiC}_{w}$. Therefore, more glass is necessary to form this composite than the monolithic with the same ratio of area percent glass to perimeter of nonglass constituents (13.11 vol \% in the monolithic).

MODEL PREDICTIONS AND DISCUSSION
Table I provides the calculated $A_{m C}$ and $A_{g C}$ values for WTC with 30 vol \% SiCw. The table lists values for a series of whisker diameters which encompass the range of commercially available whiskers. There are separate values for 1,2 , and $3 \mu \mathrm{~m} \mathrm{Si}_{3} \mathrm{~N}_{4}$ grain sizes. There is also a list of calculated $g b t$. The calculations assume that the whiskers and grains have the same ratio of area percent glass to total perimeter. These values compare with calculated monolithic gbt of 63,126 , and 189 nm for 1,2 , and $3 \mu \mathrm{~m}$ grain sizes, respectively.

The model shows that the whisker diameter strongly influences the composition needed to sinter to full density. As shown in fig. 5, the glass requirement for successful sintering increases as the whisker diameter
decreases. Similarly, for a constant whisker diameter less than the grain size, the glass requirement increases as the grain size increases. These observations are important because of the tendency to substitute different whiskers from different manufacturers into the same matrix composition. To compare different whiskers directly, modification of the matrix composition is necessary for each WTC.

Figure 6 shows that for a fixed grain size, as the volume percent SiC_{W} increases, the volume percent glass required for sintering increases. This is true as long as the grain size exceeds the whisker diameter. In such cases, more than 1 whisker is necessary to replace one grain. The smaller whiskers require more glass than the grains they replace to maintain the same ratio of area percent glass to total perimeter. However, the glass requirement diminishes when the grain size is less than the whisker diameter. Therefore, the model shows that the volume percent SiCw influences the composition of the matrix phase.

Table II also shows the increase in volume percent glass required as the whisker load increases. There is a nominal increase in glass amount from 13.11 to 15.99 vol $\%$ as the volume percent siC_{W} increases from 0 to 30 . However that increase is from 13.11 to 22.84 vol $\%$ glass in the matrix. In a monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$ that increase in glass would result in reduced strength at high temperature as the glass phase softens. 17 However, even though the glass content in the WTC matrix increases by 74.2 percent, the calculated average gbt decreases slightly. Therefore, this suggests that high temperature properties should not decrease more than the monolithic material despite the large increase in glass amount.

Figure 7 is a simplified ternary phase diagram for the $\mathrm{Si}_{3} \mathrm{~N}_{4}-\mathrm{SiO}_{2}-\mathrm{Y}_{2} \mathrm{O}_{3}$ system. In the lower left hand corner is the NASA $6 Y$ monolithic composition. The compositions lying on the dashed line through that point have a constant
$\mathrm{SiO}_{2} / \mathrm{Y}_{2} \mathrm{O}_{3}$ ratio. After calculating the glass amount for the composite, select the additive amount so the composition of the matrix lies on that line. By this method the composition of the glassy grain boundary will be the same in the composite as in the comparable monolithic.

Recent literature supports the model. Figure 8 presents the data of Tamari, et al. 18 Converting from the reported mole percent sintering aids to volume percent glass made the data compatible with the model developed in this paper. The conversion assumed glass densities based on the rule of mixtures. The figure clearly shows that as the volume percent glass in a $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composite increases, the sintered density also increases. In that study, both 10 and 20 wt \% (11.44 and 23.81 vol \%) $\mathrm{SiC}_{\mathrm{w}} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composites sintered to 100 percent density. A 30 wt $\%(35.61 \mathrm{vol} \%$) composite did not sinter to full density even with 24 vol \% glass. Those composite systems contained $0.5 \mu \mathrm{~m}$ diameter whiskers. By assuming a $2.0 \mu \mathrm{~m}$ grain size and a $15.43 \mathrm{vol} \%$ monolithic glass amount, the model offers a possible explanation. In fig. 9 , the 10 and 20 wt \% composites which sintered to full density fall on the line predicted by the model. The 30 wt \% composite falls below the model line suggesting that not enough glass was available for sintering in that composite. CONCLUSIONS

Presented in this paper is a simple two-dimensional model which suggests that pressureless sintering of $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composites is possible provided there is an adequate glass amount. The model assumes parallel alignment of both $\mathrm{Si}_{3} \mathrm{~N}_{4}$ grains and SiC_{W}. Only pressure consolidation or extrusion could cause this type of microstructure. However, this is a reasonable simplifying assumption for a first effort in determining sinterable compositions. The model also postulates that grain size, gbt, and glassy grain boundary composition are the same in the WTC and the analogous monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$. This is a logical assumption since both the glass viscosity and amount determine
the grain morphology during liquid-phase sintering. The effect of the first assumption and the validity of the second assumption are now under investigation.

If the simple two-dimensional model does not accurately predict the glass amount needed for sintering to full density, there are two considerations. First, the whisker packing is less efficient in an isotropic composite than in the assumed anisotropic alignment. Under isotropic conditions, the whiskers may indeed form a constraining network and inhibit complete densification. However, the successful pressureless sintering of $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composites by Tamari, et al. 18 suggests that this is not true. Further, the Tamari data shows that the two-dimensional model can predict compositions with enough glass to allow full densification. Second, the simple two-dimensional model may not adequately describe the complexities of WTC sintering. It may require a more rigorous two-dimensional model or a three-dimensional model. A threedimensional model would consider whisker aspect ratio and three-dimensional random packing of both the whiskers and the grains. Other considerations for both the two-dimensional and three-dimensional models include a distribution of both grain sizes and whisker diameters.

Use of a three-dimensional model will likely increase the glass requirement because of the added surface area at the whisker ends. Thus, the glass amount predicted by the two-dimensional model is the minimum amount required, since more rigorous models are likely to predict a larger amount.

SUMMARY

This paper presents a simple two-dimensional model to predict the compositions of $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ composites that should be sinterable to full density. Use of this model should make it possible to produce a WTC with the same grain size and grain boundary characteristics as a good monolithic $\mathrm{Si}_{3} \mathrm{~N}_{4}$. This would allow a direct determination of the effect of whisker additions on
the matrix material. The model shows that the glass amount needed to successfully sinter the WTC is more than that needed to sinter the monolithic. However, the excess glass does not increase the calculated $g b_{t}$. The relative. sizes of the whiskers and grains strongly influence the necessary glass amount. The sinterable composition also depends on the size and loading of $\mathrm{SiC}_{\mathrm{W}}$. Recent data in the literature support the model.

REFERENCES

1. G.C. Wei and P.F. Becher, "Development of SiC-Whisker-Reinforced Ceramics," Am. Ceram. Soc. Bull., 64[2] 298-304 (1985).
2. N. Claussen and G. Petzow, "Whisker-Reinforced Oxide Ceramics," J. de Physique, 47[Cl] 693-702 (1986).
3. S.C. Samanta and S. Musikant, "SiC Whisker-Reinforced Ceramic Matrix Composites," Ceram. Eng. Sci. Proc., 6[7-8] 663-672 (1985).
4. S.T. Buljan, J.G. Baldoni, and M.L. Huckabee, "Si3N4-SiC Composites," Am. Ceram. Soc. Bull., 66[2] 347-352 (1987).
5. C.A. Wilkens and N.D. Corbin, "Development of Toughened $\mathrm{Si}_{3} \mathrm{~N}_{4}$ Composites by Glass Encapsulated Hot Isostatic Pressure," pp. 145-152 in Proceedings of the Twenty-Fifth Automotive Technology Development Contractors' Coordination Meeting, SAE P-209, Society of Automotive Engineers, Warrendale, PA, 1988.
6. T.N. Tiegs and P.F. Becher, "Sintered $\mathrm{Al}_{2} \mathrm{O}_{3}$-SiC-Whisker Composites," Am. Ceram. Soc. Bull., 66[2] 339-342 (1987).
7. W.A. Sanders, unpublished results.
8. P.D. Shalek, J.J. Petrovic, G.F. Hurley, and F.D. Gac, "Hot-Pressed SiC Whisker/Si S_{4} Matrix Composites," Am. Ceram. Soc. Bull., 65[2] 351-356 (1986).
9. K. Haynes and H. Yeh, "Si ${ }_{3} \mathrm{~N}_{4}$ Matrix Composite Development," pp. 195-198 in Proceedings of the Twenty-Third Automotive Technology Development Contractors' Coordination Meeting, SAE P-165, Society of Automotive Engineers, Warrendale, PA, 1986.
10. W.A. Kaysser and G. Petzow, "Present State of Liquid Phase Sintering," Powder Metallurgy, 28[3] 145-150 (1985).
11. J.E. Marion, C.H. Hsueh, and A.G. Evans, "Liquid-Phase Sintering of Ceramics," J. Am. Ceram. Soc., 70[10] 708-713 (1987).
12. F.F. Lange, "Constrained Network Model for Predicting Densification Behavior of Composite Powders," J. Mater. Res., 2[1] 59-65 (1987).
13. G.W. Scherer, "Sintering with Rigid Inclusions," J. Am. Ceram. Soc., 70[10] 719-725 (1987).
14. R.K. Bordia and R. Raj, "Analysis of Sintering of a Composite with a Glass or Ceramic Matrix," J. Am. Ceram. Soc. Commun., 69[3] C55-C57 (1986).
15. W.A. Sanders and G.Y. Baaklini, "Correlation of Processing and Sintering Variables with the Strength and Radiography of Silicon Nitride," Adv. Ceram. Mater., 3[1] 88-94 (1988).
16. G. Wötting and G. Ziegler, "Influence of Powder Properties and Processing Conditions on Microstructure and Mechanical Properties of Sintered $\mathrm{Si}_{3} \mathrm{~N}_{4}$," Ceram. Int., 10[1] 18-22 (1984).
17. J.Y. Laval, C. Delamarre, M.C. Amamra, and D. Broussaud, "Influence of the Intergranular Microstructure of Substituted Nitrides on High Temperature Strength," J. Mater. Sci., 20[2] 381-390 (1985).
18. N. Tamari, I. Kondo, S. Sodeoka, K. Ueno, and Y. Toibana, "Sintering of Si3N4-SiC Whisker Composite," Yogyo-Kyokai-Shi (J. Ceram. Soc. Jpn.), 94[11] 1177-1179 (1986).

TABLE I. - MODEL MICROSTRUCTURAL
PARAMETERS FOR 30 VOL \% $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$

Whisker diameter, $\mu \mathrm{m}$	[AmC] Si N_{4}, vol $\%$	[AgC] glass, vol $\%$	Calcu- lated gbt, nm
Grain size $=1 \mu \mathrm{~m}$			
0.500	54.01	15.99	62.1
0.750	56.28	13.72	62.9
1.000	57.42	12.58	63.1
1.250	58.10	11.90	63.2
1.500	58.55	11.45	63.2
2.000	59.12	10.88	63.2
Grain size $=2 \mu \mathrm{~m}$			
0.500	47.20	22.80	117.9
0.750	51.74	18.26	122.1
1.000	54.01	15.99	124.1
1.250	55.37	14.63	125.2
1.500	56.28	13.72	125.8
2.000	57.42	12.58	126.3
Grain size $=3 \mu \mathrm{~m}$			
0.500	40.39	29.61	168.8
0.750	47.20	22.80	176.9
1.000	50.60	19.40	181.5
1.250	52.65	17.35	184.4
1.500	54.01	15.99	186.2
2.000	55.71	14.29	188.2

TABLE II. - MODEL $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ FORMULATIONS

Volume percent whisker $\left(A_{w C}\right)$	Calculated volume percent glass $\left(A_{g C}\right)$	Calculated volume percent Si3N $\left(A_{m C}\right)$	Volume percent glass in matrix only	Calculated average gbt, nm
0	13.11	86.89	13.11	126.0
a_{10}	14.07	75.93	15.63	125.2
a_{20}	15.03	64.97	18.79	124.6
a $_{30}$	15.99	54.01	22.84	124.1

aAssume: $2 \mu \mathrm{~m}$ grain size; $1 \mu \mathrm{~m}$ whisker diameter.

FIGURE 1. - IDEALIZED 2-D REPRESENTATION OF A MONOLITHIC Si $3_{3} \mathrm{~N}_{4}$ MICROSTRUCTURE. ASSUMES: UNIFORM, HEXAGONAL $\mathrm{Si}_{3} \mathrm{~N}_{4}$ GRAINS: HEXAGONAL PACKING: AND A UNIFORM COATING OF GLASS AROUND THE GRAINS.

FIGURE 2. - IDEALIZED 2-D REPRESENTATION OF A 33 vol \% $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ COMPOSITE MICROSTRUCTURE. ASSUMES: MATRIX COMPOSITION SAME AS MONOLITHIC (FIG, 1): HEXAGONAL SIC ${ }_{w}$ WITH SIZE EQUIVALENT TO SIZE OF $\mathrm{Si}_{3} \mathrm{~N}_{4}$ GRAIN AND ITS ASSOCIATED GLASS.

FIgure 3. - density of Sintered monolithic $\mathrm{Si}_{3} \mathrm{H}_{4}$ MATERIAL CONIAINING $\mathrm{Y}_{2} \mathrm{O}_{3}$ AS A FUNCTION OF GLASS AMOUNT.

Figure 5. - calculated volume percent glass needed to SINTER 30 vOL $\% \mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ COMPOSITES AS A FUNCTION OF WHISKER DIAMETER FOR VARIOUS AVERAGE GRAIN SIZES. ASSUNES NASA GY GLASS COMPOSITION.

FIgure 4. - Cal Culated average grain boundary thickness as a function of grain size for nasa gy monoLITHIC Si ${ }_{3} \mathrm{~N}_{4}$.

FJgure 6. - calculated volume percent glass needed to SINTER $\mathrm{SiC}_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ COMPOSITES AS A FUNCTION OF VOLUME PERCENT WHISKERS FOR Various average grain sizes. ASSUNES AN AVERAGE WHISKER DIAMETER OF $1 \mu \mathrm{~m}$ AND NASA GY GLASS COMPOSITION.

FIGURE 7. - SIMPLIFIED TERNARY PHASE DIAGRAM FOR THE $\mathrm{Si}_{3} \mathrm{~N}_{4}-\mathrm{SiO}_{2}$ $\mathrm{Y}_{2} \mathrm{O}_{3}$ SYSIEM. COMPOSITIONS WITH THE SAME $\mathrm{SiO}_{2} / \mathrm{Y}_{2} \mathrm{O}_{3}$ RATIO LIE ON THE DASHED LINE. SHOWN ARE THE NASA GY MONOLITHIC COMPOSITION and the matrix composition for a 30 vol percent $\mathrm{SiC}_{w} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ COMPOSITION BASED ON THAT MONOLITHIC MATERIAL.

FIGURE 8. - PERCENT THEORETICAL DENSITY AS A FUNCTION of volume percent glass from data of tamari, et al.

FIgure 9. - comparison of tamari, et al 18 SINTERING data with the calculated glass amount needed to fully SINTER A SiC ${ }_{W} / \mathrm{Si}_{3} \mathrm{~N}_{4}$ COMPOSITE AS A FUNCTION OF WHISKER LOADING. TAMARI, ET AL. USED A $0.5 \mu \mathrm{M}$ DIAMETER WHISKER. ASSUMES AN AVERAGE GRAIN SIZE OF $2.0 \mu \mathrm{~m}$.

Postage andfeers Pats Nathonal Aeromautus and Soace Adminstatom NASA 45 ,

