1,160 research outputs found

    Stimulated Raman Adiabatic Passage (STIRAP) Among Degenerate-Level Manifolds

    Full text link
    We examine the conditions needed to accomplish stimulated Raman adiabatic passage (STIRAP) when the three levels (g, e and f) are degenerate, with arbitrary couplings contributing to the pump-pulse interaction (g - e) and to the Stokes-pulse interaction (e-f). We show that in general a sufficient condition for complete population removal from the g set of degenerate states for arbitrary, pure or mixed, initial state is that the degeneracies should not decrease along the sequence g, e and f. We show that when this condition holds it is possible to achieve the degenerate counterpart of conventional STIRAP, whereby adiabatic passage produces complete population transfer. Indeed, the system is equivalent to a set of independent three-state systems, in each of which a STIRAP procedure can be implemented. We describe a scheme of unitary transformations that produces this result. We also examine the cases when this degeneracy constraint does not hold, and show what can be accomplished in those cases. For example, for angular momentum states when the degeneracy of the g and f levels is less than that of the e level we show how a special choice for the pulse polarizations and phases can produce complete removal of population from the g set. Our scheme can be a powerful tool for coherent control in degenerate systems, because of its robustness when selective addressing of the states is not required or impossible. We illustrate the analysis with several analytically solvable examples, in which the degeneracies originate from angular momentum orientation, as expressed by magnetic sublevels.Comment: 21 pages, 17 figure

    Production of photon states from Λ-atoms in a cavity

    Get PDF
    We analyse the system of Λ-atoms in a cavity QED of semi-transparent mirror and driven by laser fields. We derive effective models and connect concepts (photonic flux, input-output operators, photonic state) characterizing the propagation of the resulting leaking photons. We propose an atom-cavity non-resonant scheme for single-and 2-photons generation. The pulse shapes of outgoing single photons are tailored using a specifically designed driving field envelope. For the production of 2-photon states, two trapped atoms are used with two driving pulses. Their pulse shapes are characterized and it is shown that the multiphoton outgoing photonic states cannot be Fock states, since the photons are not generated strictly simultaneously

    Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy

    Get PDF
    Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (1E-13 m/rtHz) AFM to investigate the mechanical behavior of a SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT and its mechanical behavior is provided

    Measuring the Density Matrix by Local Addressing

    Full text link
    We introduce a procedure to measure the density matrix of a material system. The density matrix is addressed locally in this scheme by applying a sequence of delayed light pulses. The procedure is based on the stimulated Raman adiabatic passage (STIRAP) technique. It is shown that a series of population measurements on the target state of the population transfer process yields unambiguous information about the populations and coherences of the addressed states, which therefore can be determined.Comment: 4 pages, 1 figur

    On a generalization of the binomial distribution and its Poisson-like limit

    Full text link
    We examine a generalization of the binomial distribution associated with a strictly increasing sequence of numbers and we prove its Poisson-like limit. Such generalizations might be found in quantum optics with imperfect detection. We discuss under which conditions this distribution can have a probabilistic interpretation.Comment: 17 pages, 6 figure

    Visibility of dichalcogenide nanolayers

    Get PDF
    Dichalcogenides with the common formula MX2 are layered materials with electrical properties that range from semiconducting to superconducting. Here, we describe optimal imaging conditions for optical detection of ultrathin, two-dimensional dichalcogenide nanocrystals containing single, double and triple layers of MoS2, WSe2 and NbSe2. A simple optical model is used to calculate the contrast for nanolayers deposited on wafers with varying thickness of SiO2. The model is extended for imaging using the green channel of a video camera. Using AFM and optical imaging we confirm that single layers of MoS2, WSe2 and NbSe2 can be detected on 90nm and 270 nm SiO2 using optical means. By measuring contrast under broad-band green illumination we are also able to distinguish between nanostructures containing single, mono and triple layers of MoS2, WSe2 and NbSe2
    • …
    corecore