10 research outputs found

    High-performance end-to-end deep learning IM/DD link using optics-informed neural networks

    Get PDF
    : In this paper, we introduce optics-informed Neural Networks and demonstrate experimentally how they can improve performance of End-to-End deep learning models for IM/DD optical transmission links. Optics-informed or optics-inspired NNs are defined as the type of DL models that rely on linear and/or nonlinear building blocks whose mathematical description stems directly from the respective response of photonic devices, drawing their mathematical framework from neuromorphic photonic hardware developments and properly adapting their DL training algorithms. We investigate the application of an optics-inspired activation function that can be obtained by a semiconductor-based nonlinear optical module and is a variant of the logistic sigmoid, referred to as the Photonic Sigmoid, in End-to-End Deep Learning configurations for fiber communication links. Compared to state-of-the-art ReLU-based configurations used in End-to-End DL fiber link demonstrations, optics-informed models based on the Photonic Sigmoid show improved noise- and chromatic dispersion compensation properties in fiber-optic IM/DD links. An extensive simulation and experimental analysis revealed significant performance benefits for the Photonic Sigmoid NNs that can reach below BER HD FEC limit for fiber lengths up to 42 km, at an effective bit transmission rate of 48 Gb/s

    Leveraging Deep Learning and Online Source Sentiment for Financial Portfolio Management

    Full text link
    Financial portfolio management describes the task of distributing funds and conducting trading operations on a set of financial assets, such as stocks, index funds, foreign exchange or cryptocurrencies, aiming to maximize the profit while minimizing the loss incurred by said operations. Deep Learning (DL) methods have been consistently excelling at various tasks and automated financial trading is one of the most complex one of those. This paper aims to provide insight into various DL methods for financial trading, under both the supervised and reinforcement learning schemes. At the same time, taking into consideration sentiment information regarding the traded assets, we discuss and demonstrate their usefulness through corresponding research studies. Finally, we discuss commonly found problems in training such financial agents and equip the reader with the necessary knowledge to avoid these problems and apply the discussed methods in practice

    Multiplicative update rules for accelerating deep learning training and increasing robustness

    Full text link
    Even nowadays, where Deep Learning (DL) has achieved state-of-the-art performance in a wide range of research domains, accelerating training and building robust DL models remains a challenging task. To this end, generations of researchers have pursued to develop robust methods for training DL architectures that can be less sensitive to weight distributions, model architectures and loss landscapes. However, such methods are limited to adaptive learning rate optimizers, initialization schemes, and clipping gradients without investigating the fundamental rule of parameters update. Although multiplicative updates have contributed significantly to the early development of machine learning and hold strong theoretical claims, to best of our knowledge, this is the first work that investigate them in context of DL training acceleration and robustness. In this work, we propose an optimization framework that fits to a wide range of optimization algorithms and enables one to apply alternative update rules. To this end, we propose a novel multiplicative update rule and we extend their capabilities by combining it with a traditional additive update term, under a novel hybrid update method. We claim that the proposed framework accelerates training, while leading to more robust models in contrast to traditionally used additive update rule and we experimentally demonstrate their effectiveness in a wide range of task and optimization methods. Such tasks ranging from convex and non-convex optimization to difficult image classification benchmarks applying a wide range of traditionally used optimization methods and Deep Neural Network (DNN) architectures

    Photonic neural networks and optics-informed deep learning fundamentals

    No full text
    The recent explosive compute growth, mainly fueled by the boost of artificial intelligence (AI) and deep neural networks (DNNs), is currently instigating the demand for a novel computing paradigm that can overcome the insurmountable barriers imposed by conventional electronic computing architectures. Photonic neural networks (PNNs) implemented on silicon integration platforms stand out as a promising candidate to endow neural network (NN) hardware, offering the potential for energy efficient and ultra-fast computations through the utilization of the unique primitives of photonics, i.e., energy efficiency, THz bandwidth, and low-latency. Thus far, several demonstrations have revealed the huge potential of PNNs in performing both linear and non-linear NN operations at unparalleled speed and energy consumption metrics. Transforming this potential into a tangible reality for deep learning (DL) applications requires, however, a deep understanding of the basic PNN principles, requirements, and challenges across all constituent architectural, technological, and training aspects. In this Tutorial, we, initially, review the principles of DNNs along with their fundamental building blocks, analyzing also the key mathematical operations needed for their computation in photonic hardware. Then, we investigate, through an intuitive mathematical analysis, the interdependence of bit precision and energy efficiency in analog photonic circuitry, discussing the opportunities and challenges of PNNs. Followingly, a performance overview of PNN architectures, weight technologies, and activation functions is presented, summarizing their impact in speed, scalability, and power consumption. Finally, we provide a holistic overview of the optics-informed NN training framework that incorporates the physical properties of photonic building blocks into the training process in order to improve the NN classification accuracy and effectively elevate neuromorphic photonic hardware into high-performance DL computational settings

    Channel response-aware photonic neural network accelerators for high-speed inference through bandwidth-limited optics

    No full text
    Photonic neural network accelerators (PNNAs) have been lately brought into the spotlight as a new class of custom hardware that can leverage the maturity of photonic integration towards addressing the low-energy and computational power requirements of deep learning (DL) workloads. Transferring, however, the high-speed credentials of photonic circuitry into analogue neuromorphic computing necessitates a new set of DL training methods aligned along certain analogue photonic hardware characteristics. Herein, we present a novel channel response-aware (CRA) DL architecture that can address the implementation challenges of high-speed compute rates on bandwidth-limited photonic devices by incorporating their frequency response into the training procedure. The proposed architecture was validated both through software and experimentally by implementing the output layer of a neural network (NN) that classifies images of the MNIST dataset on an integrated SiPho coherent linear neuron (COLN) with a 3dB channel bandwidth of 7 GHz. A comparative analysis between the baseline and CRA model at 20, 25 and 32GMAC/sec/axon revealed respective experimental accuracies of 98.5%, 97.3% and 92.1% for the CRA model, outperforming the baseline model by 7.9%, 12.3% and 15.6%, respectively

    25GMAC/sec/axon photonic neural networks with 7GHz bandwidth optics through channel response-aware training

    No full text
    We present a channel response-aware Photonic Neural Network (PNN) and demonstrate experimentally its resilience in Inter-Symbol Interference (ISI) when implemented in an integrated neuron. The trained PNN model performs at 25GMAC/sec/axon using only 7GHz-bandwidth photonic axons with 97.37% accuracy in the MNIST dataset

    A silicon photonic coherent neuron with 10GMAC/sec processing line-rate

    No full text
    We demonstrate a novel coherent Si-Pho neuron with 10Gbaud on-chip input-data vector generation capabilities. Its performance as a hidden layer within a neural network has been experimentally validated for the MNIST data-set, yielding 96.19% accuracy

    Neuromorphic silicon photonics and hardware-aware deep learning for high-speed inference

    No full text
    The relentless growth of Artificial Intelligence (AI) workloads has fueled the drive towards non-Von Neuman architectures and custom computing hardware. Neuromorphic photonic engines aspire to synergize the low-power and high-bandwidth credentials of light-based deployments with novel architectures, towards surpassing the computing performance of their electronic counterparts. In this paper, we review recent progress in integrated photonic neuromorphic architectures and analyze the architectural and photonic hardware-based factors that limit their performance. Subsequently, we present our approach towards transforming silicon coherent neuromorphic layouts into high-speed and high-accuracy Deep Learning (DL) engines by combining robust architectures with hardware-aware DL training. Circuit robustness is ensured through a crossbar layout that circumvents insertion loss and fidelity constraints of state-of-the-art linear optical designs. Concurrently, we employ DL training models adapted to the underlying photonic hardware, incorporating noise- and bandwidth-limitations together with the supported activation function directly into Neural Network (NN) training. We validate experimentally the high-speed and high-accuracy advantages of hardware-aware DL models when combined with robust architectures through a SiPho prototype implementing a single column of a 4:4 photonic crossbar. This was utilized as the pen-ultimate hidden layer of a NN, revealing up to 5.93% accuracy improvement at 5GMAC/sec/axon when noise-aware training is enforced and allowing accuracies of 99.15% and 79.8% for the MNIST and CIFAR-10 classification tasks. Channel-aware training was then demonstrated by integrating the frequency response of the photonic hardware in NN training, with its experimental validation with the MNIST dataset revealing an accuracy increase of 12.93% at a record-high rate of 25GMAC/sec/axon
    corecore