116 research outputs found

    Progressive scoliosis in central core disease

    Get PDF
    Central core disease (CCD) is a rare congenital myopathy with autosomal dominant inheritance. Here, we report on two cases of progressive scoliosis in CCD, pointing out the value of a muscle biopsy to establish the correct diagnosis. The first case involves a 13-year-old boy with severe progressive scoliosis and joint contractures. The patient was initially diagnosed with arthropgryposis multiplex congenita. The second case involves a 45-year-old man with severe scoliosis that had slowly progressed over the years. Both patients suffered from unexplained muscle weakness and severe restriction of pulmonary function. The correct diagnoses were established through muscle biopsies taken from the paravertebral musculature during scoliosis surgery. Correction of the spinal deformities was achieved through posterior instrumentation in both patients, with prior anterior release in one patient. Although scoliosis is a common feature in CCD, the correct diagnosis can be missed in scoliosis patients. Therefore, we recommend a muscle biopsy in patients with scoliosis, unexplained muscle weakness and multiple joint problem

    Interspatial Distribution of Tumor and Immune Cells in Correlation with PD-L1 in Molecular Subtypes of Gastric Cancers.

    Get PDF
    (1) Background: EBV-positive and mismatch repair-deficient (MMRd) gastric cancers (GCs) show higher levels of tumor-infiltrating lymphocytes (TILs) and PD-L1 expression and thus a more profound response to immunotherapy. However, the majority of GCs are EBV-negative (EBV-) and MMR proficient (MMRp). We analyzed PD-L1 expression and TILs in EBV-MMRpGCs in comparison to EBV-positive (EBV+) and MMRdGCs to identify an immunogenic phenotype susceptible to immunotherapy. (2) Methods: A next-generation tissue microarray of 409 primary resected GCs was analyzed by Epstein-Barr encoding region (EBER) in situ hybridization for MSH1, PMS2, MSH2, MSH6, PD-L1, and CD8 immunohistochemistry. PD-L1 positivity was defined as a combined positive score (CPS) of ≄1. CD8+ TILs and their proximity to cancer cells were digitally analyzed on the HALOℱ image analysis platform. (3) Results: Eleven cases were EBV+, 49 cases MMRd, and 349 cases EBV-MMRpGCs. The highest rate of PD-L1 positivity was seen in EBV+GCs, followed by MMRdGCs and EBV-MMRpGCs (81.8%, 73.5%, and 27.8%, respectively). EBV+ and MMRdGCs also demonstrated increased numbers and proximity of CD8+ TILs to tumor cells compared to EBV-MMRpGCs (p < 0.001 each). PD-L1 status positively correlated with the total numbers of CD8+ TILs and their proximity to tumor cells in all subtypes, including EBV-MMRpGCs (p < 0.001 each). A total of 28.4% of EBV-MMRpGCs showed high CD8+ TILs independent of PD-L1. (4) Conclusions: PD-L1 and CD8 immunohistochemistry, supplemented by digital image analysis, may identify EBV-MMRpGCs with high immunoreactivity indices, indicating susceptibility to immunotherapy

    Interleukin-33 in human gliomas: Expression and prognostic significance

    Full text link
    Interleukin-33 (IL-33) is a nuclear and pleiotropic cytokine with regard to its cellular sources and its actions. IL-33 is involved in the pathogenesis of brain diseases. Several factors account for the tumorigenicity of human gliomas, including cytokines and their receptors. The present study assessed the expression and prognostic significance of IL-33 in human astroglial brain tumors. Protein levels of IL-33 were determined by immunohistochemistry using a tissue microarray containing 95 human gliomas. mRNA expression data of IL-33, as well as of its receptors, IL-1 receptor-like 1 protein and IL-1 receptor accessory protein (IL1RAcP), were obtained from The Cancer Genome Atlas database. IL-33 protein was expressed heterogeneously in tumor tissue, but was, however, not detected in normal brain tissue. There was no differential IL-33 protein expression by tumor grade, while IL-33 protein expression was associated with inferior survival in patients with recurrent glioblastomas. Interrogations of the TCGA database indicated that mRNA expression of IL-33 and the IL-33 receptors was heterogeneous, and that IL-33 and IL1RAcP mRNA levels were correlated with the tumor grade. Elevated IL-33 mRNA levels were associated with the inferior survival of glioblastoma patients. Therefore, IL-33 may play an important role in the pathogenesis and prognosis of human gliomas

    Immune system and peripheral nerves in propagation of prions to CNS

    Get PDF
    Prions are not only unique in the way they replicate. Also the sequence of events triggered by peripheral prion infection, generically termed ‘peripheral pathogenesis', sets prions aside from all other known pathogens. Whereas most bacteria, parasites, and viruses trigger innate and adaptive immune responses, the mammalian immune system appears to be remarkably oblivious to prions. Transmissible spongiform encephalopathies (TSEs) do not go along with inflammatory infiltrates, and antibodies to the prion protein are not typically raised during the course of the disease. On the other hand, there is conspicuous involvement of lymphoid organs, which accumulate sizeable concentrations of the infectious agent early during disease. Moreover, various states of immune deficiency can abolish peripheral pathogenesis and prevent ‘take' of infection when prions are administered to peripheral sites. Here, we critically re-visit the current evidence for an involvement of the immune system in prion diseases, and will attempt to trace the elaborate mechanisms by which prions, upon entry into the body from peripheral sites, reach the brai

    Integrated Analysis Of Immunotherapy Treated Clear Cell Renal Cell Carcinomas: An Exploratory Study

    Full text link
    Molecular or immunological differences between responders and nonresponders to immune checkpoint inhibitors (ICIs) of clear cell renal cell carcinomas (ccRCCs) remain incompletely understood. To address this question, we performed next-generation sequencing, methylation analysis, genome wide copy number analysis, targeted RNA sequencing and T-cell receptor sequencing, and we studied frequencies of tumor-infiltrating CD8+ T cells, presence of tertiary lymphoid structures (TLS) and PD-L1 expression in 8 treatment-naive ccRCC patients subsequently treated with ICI (3 responders, 5 nonresponders). Unexpectedly, we identified decreased frequencies of CD8+ tumor-infiltrating T cells and TLS, and a decreased expression of PD-L1 in ICI responders when compared with nonresponders. However, neither tumor-specific genetic alterations nor gene expression profiles correlated with response to ICI or the observed immune features. Our results underline the challenge to stratify ccRCC patients for immunotherapy based on routinely available pathologic primary tumor material, even with advanced technologies. Our findings emphasize the analysis of pretreated metastatic tissue in line with recent observations describing treatment effects on the tumor microenvironment. In addition, our data call for further investigation of additional parameters in a larger ccRCC cohort to understand the mechanistic implications of the observed differences in tumor-infiltrating CD8+ T cells, TLS, and PD-L1 expression

    Von Willebrand factor and the thrombophilia of severe COVID-19: in situ evidence from autopsies

    Get PDF
    BACKGROUND: COVID-19 is accompanied by a hypercoagulable state and characterized by microvascular and macrovascular thrombotic complications. In plasma samples from patients with COVID-19, von Willebrand factor (VWF) levels are highly elevated and predictive of adverse outcomes, especially mortality. Yet, VWF is usually not included in routine coagulation analyses, and histologic evidence of its involvement in thrombus formation is lacking. OBJECTIVES: To determine whether VWF, an acute-phase protein, is a bystander, ie, a biomarker of endothelial dysfunction, or a causal factor in the pathogenesis of COVID-19. METHODS: We compared autopsy samples from 28 patients with lethal COVID-19 to those from matched controls and systematically assessed for VWF and platelets by immunohistochemistry. The control group comprised 24 lungs, 23 lymph nodes, and 9 hearts and did not differ significantly from the COVID-19 group in age, sex, body mass index (BMI), blood group, or anticoagulant use. RESULTS: In lungs, assessed for platelets by immunohistochemistry for CD42b, microthrombi were more frequent in patients with COVID-19 (10/28 [36%] vs 2/24 [8%]; P = .02). A completely normal pattern of VWF was rare in both groups. Accentuated endothelial staining was found in controls, while VWF-rich thrombi were only found in patients with COVID-19 (11/28 [39%] vs 0/24 [0%], respectively; P < .01), as were NETosis thrombi enriched with VWF (7/28 [25%] vs 0/24 [0%], respectively; P < .01). Forty-six percent of the patients with COVID-19 had VWF-rich thrombi, NETosis thrombi, or both. Trends were also seen in pulmonary draining lymph nodes (7/20 [35%] vs 4/24 [17%]; P = .147), where the overall presence of VWF was very high. CONCLUSION: We provide in situ evidence of VWF-rich thrombi, likely attributable to COVID-19, and suggest that VWF may be a therapeutic target in severe COVID-19

    Digital image analysis and artificial intelligence in pathology diagnostics-the Swiss view

    Get PDF
    Digital pathology (DP) is increasingly entering routine clinical pathology diagnostics. As digitization of the routine caseload advances, implementation of digital image analysis algorithms and artificial intelligence tools becomes not only attainable, but also desirable in daily sign out. The Swiss Digital Pathology Consortium (SDiPath) has initiated a Delphi process to generate best-practice recommendations for various phases of the process of digitization in pathology for the local Swiss environment, encompassing the following four topics: i) scanners, quality assurance, and validation of scans; ii) integration of scanners and systems into the pathology laboratory information system; iii) the digital workflow; and iv) digital image analysis (DIA)/artificial intelligence (AI). The current article focuses on the DIA-/AI-related recommendations generated and agreed upon by the working group and further verified by the Delphi process among the members of SDiPath. Importantly, they include the view and the currently perceived needs of practicing pathologists from multiple academic and cantonal hospitals as well as private practices

    Bone marrow haematopoiesis in patients with COVID-19

    Full text link
    AIMS Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection broadly affects organ homeostasis, including the haematopoietic system. Autopsy studies are a crucial tool for investigation of organ-specific pathologies. Here we perform an in-depth analysis of the impact of severe coronavirus disease 2019 (COVID-19) on bone marrow haematopoiesis in correlation with clinical and laboratory parameters. METHODS AND RESULTS Twenty-eight autopsy cases and five controls from two academic centres were included in the study. We performed a comprehensive analysis of bone marrow pathology and microenvironment features with clinical and laboratory parameters and assessed SARS-CoV-2 infection of the bone marrow by quantitative polymerase chain reaction (qPCR) analysis. In COVID-19 patients, bone marrow specimens showed a left-shifted myelopoiesis (19 of 28, 64%), increased myeloid-erythroid ratio (eight of 28, 28%), increased megakaryopoiesis (six of 28, 21%) and lymphocytosis (four of 28, 14%). Strikingly, a high proportion of COVID-19 specimens showed erythrophagocytosis (15 of 28, 54%) and the presence of siderophages (11 of 15, 73%) compared to control cases (none of five, 0%). Clinically, erythrophagocytosis correlated with lower haemoglobin levels and was more frequently observed in patients from the second wave. Analysis of the immune environment showed a strong increase in CD68+ macrophages (16 of 28, 57%) and a borderline lymphocytosis (five of 28, 18%). The stromal microenvironment showed oedema (two of 28, 7%) and severe capillary congestion (one of 28, 4%) in isolated cases. No stromal fibrosis or microvascular thrombosis was found. While all cases had confirmed positive testing of SARS-CoV-2 in the respiratory system, SARS-CoV-2 was not detected in the bone marrow by high-sensitivity PCR, suggesting that SARS-CoV-2 does not commonly replicate in the haematopoietic microenvironment. CONCLUSIONS SARS-CoV-2 infection indirectly impacts the haematological compartment and the bone marrow immune environment. Erythrophagocytosis is frequent and associated with lower haemoglobin levels in patients with severe COVID-19

    Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy

    Get PDF
    The persistence of undetectable disseminated tumour cells (DTCs) after primary tumour resection poses a major challenge to effective cancer treatment; 1-3; . These enduring dormant DTCs are seeds of future metastases, and the mechanisms that switch them from dormancy to outgrowth require definition. Because cancer dormancy provides a unique therapeutic window for preventing metastatic disease, a comprehensive understanding of the distribution, composition and dynamics of reservoirs of dormant DTCs is imperative. Here we show that different tissue-specific microenvironments restrain or allow the progression of breast cancer in the liver-a frequent site of metastasis; 4; that is often associated with a poor prognosis; 5; . Using mouse models, we show that there is a selective increase in natural killer (NK) cells in the dormant milieu. Adjuvant interleukin-15-based immunotherapy ensures an abundant pool of NK cells that sustains dormancy through interferon-Îł signalling, thereby preventing hepatic metastases and prolonging survival. Exit from dormancy follows a marked contraction of the NK cell compartment and the concurrent accumulation of activated hepatic stellate cells (aHSCs). Our proteomics studies on liver co-cultures implicate the aHSC-secreted chemokine CXCL12 in the induction of NK cell quiescence through its cognate receptor CXCR4. CXCL12 expression and aHSC abundance are closely correlated in patients with liver metastases. Our data identify the interplay between NK cells and aHSCs as a master switch of cancer dormancy, and suggest that therapies aimed at normalizing the NK cell pool might succeed in preventing metastatic outgrowth
    • 

    corecore