12 research outputs found

    Bone Marrow Changes in Adolescent Girls With Anorexia Nervosa

    Get PDF
    Early osteoporosis is common among adolescent girls with anorexia nervosa (AN) and may result from premature conversion of red (RM) to yellow bone marrow. We performed right knee magnetic resonance imaging (MRI) on a 1.0 T extremity scanner in 20 patients and 20 healthy controls, aged 16.2 ± 1.6 years (mean ± SD). Coronal T1-weighted (T1W) images and T1 maps were generated from T1 relaxometry images. Blinded radiologists visually assessed RM in the distal femoral and proximal tibial metaphyses in T1W images using a scale of signal intensity from 0 (homogeneous hyperintensity, no RM) to 4 (all dark, complete RM). Subjects with AN exhibited nearly twofold lower metaphyseal RM scores in both the femur (0.64 versus 1.22, p = .03) and tibia (0.54 versus 0.96, p = .08). In relaxometric measurements of four selected regions (femur and tibia amd epiphysis and metaphysis), subjects with AN showed higher mean epiphyseal but lower metaphyseal T1. The net AN-control difference between epiphysis and metaphysis was 70 ms in the femur (+31 versus −35 ms, p = .02) and of smaller magnitude in the tibia. In relaxometry data from the full width of the femur adjacent to the growth plate, AN subjects showed mean T1 consistently lower than in controls by 30 to 50 ms in virtually every part of the sampling region. These findings suggest that adolescents with AN exhibit premature conversion of hematopoietic to fat cells in the marrow of the peripheral skeleton potentially owing to adipocyte over osteoblast differentiation in the mesenchymal stem cell pool. © 2010 American Society for Bone and Mineral Researc

    Patterns of Premature Physeal Arrest

    No full text

    Magnetic resonance imaging and spectroscopy evidence of efficacy for adrenal and gonadal hormone replacement therapy in anorexia nervosa.

    No full text
    PURPOSE: Dehydroepiandrosterone (DHEA)+estrogen/progestin therapy for adolescent girls with anorexia nervosa (AN) has the potential to arrest bone loss. The primary aim of this study was to test the effects of DHEA+estrogen/progestin therapy in adolescent girls with AN on bone marrow in the distal femur using magnetic resonance imaging (MRI) and spectroscopy. METHODS: Seventy adolescent girls with AN were enrolled in a double blind, randomized, placebo-controlled trial at two urban hospital-based programs. INTERVENTION: Seventy-six girls were randomly assigned to receive 12months of either oral micronized DHEA or placebo. DHEA was administered with conjugated equine estrogens (0.3mg daily) for 3months, then an oral contraceptive (20μg ethinyl estradiol/ 0.1mg levonorgestrel) for 9months. The primary outcome measure was bone marrow fat by MRI and magnetic resonance spectroscopy (MRS). RESULTS: T2 of the water resonance dropped significantly less in the active vs. placebo group over 12months at both the medial and lateral distal femur (p=0.02). Body mass index (BMI) was a significant effect modifier for T1 and for T2 of unsaturated (T2 CONCLUSIONS: These findings suggest treatment with oral DHEA+estrogen/progestin arrests the age- and disease-related changes in marrow fat composition in the lateral distal femur reported previously in this population

    Recessive MYF5 Mutations Cause External Ophthalmoplegia, Rib, and Vertebral Anomalies

    No full text
    MYF5 is member of the Myc-like basic helix-loop-helix transcription factor family and, in cooperation with other myogenic regulatory factors MYOD and MYF5, is a key regulator of early stages of myogenesis. Here, we report three consanguineous families with biallelic homozygous loss-of-function mutations in MYF5 who define a clinical disorder characterized by congenital ophthalmoplegia with scoliosis and vertebral and rib anomalies. The clinical phenotype overlaps strikingly with that reported in several Myf5 knockout mouse models. Affected members of two families share a haploidentical region that contains a homozygous 10 by frameshift mutation in exon 1 of MYF5 (c.23_32delAGTTCTCACC [p.GIn8Leufs*86]) predicted to undergo nonsense-mediated decay. Affected members of the third family harbor a homozygous missense change in exon 1 of MYF5 (c.283C>T [p.Arg95Cys]). Using in vitro assays, we show that this missense mutation acts as a loss-of-function allele by impairing MYF5 DNA binding and nuclear localization. We performed whole-genome sequencing in one affected individual with the frameshift mutation and did not identify additional rare variants in the haploidentical region that might account for differences in severity among the families. These data support the direct role of MYF5 in rib, spine, and extraocular muscle formation in humans

    A multidisciplinary assessment of pain in juvenile idiopathic arthritis

    No full text
    INTRODUCTION: Pain is prevalent in juvenile idiopathic arthritis (JIA). Unknowns regarding the biological drivers of pain complicate therapeutic targeting. We employed neuroimaging to define pain-related neurobiological features altered in JIA. METHODS: 16 male and female JIA patients (12.7 ± 2.8 years of age) on active treatment were enrolled, together with age- and sex-matched controls. Patients were assessed using physical examination, clinical questionnaires, musculoskeletal MRI, and structural neuroimaging. In addition, functional magnetic resonance imaging (fMRI) data were collected during the resting-state, hand-motor task performance, and cold stimulation of the hand and knee. RESULTS: Patients with and without pain and with and without inflammation (joint and systemic) were evaluated. Pain severity was associated with more physical stress and poorer cognitive function. Corrected for multiple comparisons, morphological analysis revealed decreased cortical thickness within the insula cortex and a negative correlation between caudate nucleus volume and pain severity. Functional neuroimaging findings suggested alteration within neurocircuitry structures regulating emotional pain processing (anterior insula) in addition to the default-mode and sensorimotor networks. CONCLUSIONS: Patients with JIA may exhibit changes in neurobiological circuits related to pain. These preliminary findings suggest mechanisms by which pain could potentially become dissociated from detectable joint pathology and persist independently of inflammation or treatment status

    Proteomics based markers of clinical pain severity in juvenile idiopathic arthritis

    No full text
    INTRODUCTION: Juvenile idiopathic arthritis (JIA) is a cluster of autoimmune rheumatic diseases occurring in children 16 years of age or less. While it is well-known that pain may be experienced during inflammatory and non-inflammatory states, much remains ambiguous regarding the molecular mechanisms that may drive JIA pain. Thus, in this pilot study, we explored the variability of the serum proteomes in relation to pain severity in a cohort of JIA patients. METHODS: Serum samples from 15 JIA patients (male and female, 12.7 ± 2.8 years of age) were assessed using liquid chromatography/mass spectrometry (LC/MS). Correlation analyses were performed to determine the relationships among protein levels and self-reported clinical pain severity. Additionally, how the expression of pain-associated proteins related to markers of inflammation (Erythrocyte Sedimentation Rate (ESR)) or morphological properties of the central nervous system (subcortical volume and cortical thickness) implicated in JIA were also evaluated. RESULTS: 306 proteins were identified in the JIA cohort of which 14 were significantly (p < 0.05) associated with clinical pain severity. Functional properties of the identified pain-associated proteins included but were not limited to humoral immunity (IGLV3.9), inflammatory response (PRG4) and angiogenesis (ANG). Associations among pain-associated proteins and ESR (IGHV3.9, PRG4, CST3, VWF, ALB), as well as caudate nucleus volume (BTD, AGT, IGHV3.74) and insular cortex thickness (BTD, LGALS3BP) were also observed. CONCLUSIONS: The current proteomic findings suggest both inflammatory- and non-inflammatory mediated mechanisms as potential factors associated with JIA pain. Validation of these preliminary observations using larger patient cohorts and a longitudinal study design may further point to novel serologic markers of pain in JIA. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12969-022-00662-1
    corecore