17 research outputs found
Electrical detection of magnetic skyrmions by non-collinear magnetoresistance
Magnetic skyrmions are localised non-collinear spin textures with high
potential for future spintronic applications. Skyrmion phases have been
discovered in a number of materials and a focus of current research is the
preparation, detection, and manipulation of individual skyrmions for an
implementation in devices. Local experimental characterization of skyrmions has
been performed by, e.g., Lorentz microscopy or atomic-scale tunnel
magnetoresistance measurements using spin-polarised scanning tunneling
microscopy. Here, we report on a drastic change of the differential tunnel
conductance for magnetic skyrmions arising from their non-collinearity: mixing
between the spin channels locally alters the electronic structure, making a
skyrmion electronically distinct from its ferromagnetic environment. We propose
this non-collinear magnetoresistance (NCMR) as a reliable all-electrical
detection scheme for skyrmions with an easy implementation into device
architectures
Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration
Frontotemporal lobar degeneration (FTLD) is a clinically, genetically and pathologically heterogeneous disorder. Within FTLD with ubiquitin-positive inclusions (FTLD-U), a new pathological subtype named FTLD-FUS was recently found with fused in sarcoma (FUS) positive, TDP-43-negative inclusions, and striking atrophy of the caudate nucleus. The aim of this study was to determine the frequency of FTLD-FUS in our pathological FTLD series, and to describe the clinical, neuroimaging and neuropathological features of FTLD-FUS, especially caudate atrophy. Demographic and clinical data collected prospectively from 387 patients with frontotemporal dementia (FTD) yielded 74 brain specimens. Immunostaining was carried out using a panel of antibodies, including AT-8, ubiquitin, p62, FUS, and TDP-43. Cortical and caudate atrophy on MRI (n = 136) was rated as normal, mild-moderate or severe. Of the 37 FTLD-U cases, 33 were reclassified as FTLD-TDP and four (0.11, 95%: 0.00–0.21) as FTLD-FUS, with ubiquitin and FUS-positive, p62 and TDP-43-negative neuronal intranuclear inclusions (NII). All four FTLD-FUS cases had a negative family history, behavioural variant FTD (bvFTD), and three had an age at onset ≤40 years. MRI revealed mild-moderate or severe caudate atrophy in all, with a mean duration from onset till MRI of 63 months (range 16–119 months). In our total clinical FTD cohort, we found 11 patients (0.03; 95% CI: 0.01–0.05) with bvFTD, negative family history, and age at onset ≤40 years. Caudate atrophy was present in 10 out of 136 MRIs, and included all four FUS-cases. The newly identified FTLD-FUS has a frequency of 11% in FTLD-U, and an estimated frequency of three percent in our clinical FTD cohort. The existence of this pathological subtype can be predicted with reasonable certainty by age at onset ≤40 years, negative family history, bvFTD and caudate atrophy on MRI
Divergent trends of large carnivore populations within the Bénoué Complex, North Cameroon, shown by long-term fine-scale monitoring
Large carnivore populations have suffered declines worldwide. For the African continent, these have been particularly strong in West and Central Africa. The Bénoué Complex in North Cameroon, located in Central Africa, is a key landscape for their conservation. We determined spatiotemporal trends in lion (Panthera leo), leopard (Panthera pardus) and spotted hyaena (Crocuta crocuta) abundance, using repeated spoor counts on transects from 2007 to 2015. Results of the temporal analysis indicate that lion and spotted hyaena abundance reduced over time across the complex, whereas leopards only declined in the last 2 years and primarily in the Faro Block. From the spatial analysis, it became clear spoor abundances differ between areas within the Bénoué Complex and between management types: Spoor densities were especially higher in Bouba Ndjida National Park and the hunting zones around Faro. This effect is most probably related to a more effective management strategy in these areas. Our fine-scale long-term monitoring technique provides a low-cost, easy to implement, multi-scale and effective tool for the identification of both regional and range-wide carnivore conservation hotspots