67 research outputs found

    Al1−xScxN Thin Films at High Temperatures: Sc-Dependent Instability and Anomalous Thermal Expansion

    Get PDF
    Ferroelectric thin films of wurtzite-type aluminum scandium nitride (Al1-xScxN) are promising candidates for non-volatile memory applications and high-temperature sensors due to their outstanding functional and thermal stability exceeding most other ferroelectric thin film materials. In this work, the thermal expansion along with the temperature stability and its interrelated effects have been investigated for Al1-xScxN thin films on sapphire Al2O3(0001) with Sc concentrations x (x = 0, 0.09, 0.23, 0.32, 0.40) using in situ X-ray diffraction analyses up to 1100 °C. The selected Al1-xScxN thin films were grown with epitaxial and fiber textured microstructures of high crystal quality, dependent on the choice of growth template, e.g., epitaxial on Al2O3(0001) and fiber texture on Mo(110)/AlN(0001)/Si(100). The presented studies expose an anomalous regime of thermal expansion at high temperatures >~600 °C, which is described as an isotropic expansion of a and c lattice parameters during annealing. The collected high-temperature data suggest differentiation of the observed thermal expansion behavior into defect-coupled intrinsic and oxygen-impurity-coupled extrinsic contributions. In our hypothesis, intrinsic effects are denoted to the thermal activation, migration and curing of defect structures in the material, whereas extrinsic effects describe the interaction of available oxygen species with these activated defect structures. Their interaction is the dominant process at high temperatures >800 °C resulting in the stabilization of larger modifications of the unit cell parameters than under exclusion of oxygen. The described phenomena are relevant for manufacturing and operation of new Al1-xScxN-based devices, e.g., in the fields of high-temperature resistant memory or power el. appl

    Characterization of Structural Defects in (Cd,Zn)Te Crystals Grown by the Travelling Heater Method

    Get PDF
    Structural defects and compositional uniformity remain the major problems affecting the performance of (Cd, Zn)Te (CZT) based detector devices. Understanding the mechanism of growth and defect formation is therefore fundamental to improving the crystal quality. In this frame, space experiments for the growth of CZT by the Travelling Heater Method (THM) under microgravity are scheduled. A detailed ground-based program was performed to determine experimental parameters and three CZT crystals were grown by the THM. The structural defects, compositional homogeneity and resistivity of these ground-based crystals were investigated. A ZnTe content variation was observed at the growth interface and a high degree of stress associated with extensive dislocation networks was induced, which propagated into the grown crystal region according to the birefringence and X-ray White Beam Topography (XWBT) results. By adjusting the growth parameters, the ZnTe variations and the resulting stress were efficiently reduced. In addition, it was revealed that large inclusions and grain boundaries can generate a high degree of stress, leading to the formation of dislocation slip bands and subgrain boundaries. The dominant defects, including grain boundaries, dislocation networks and cracks in the interior of crystals, led to the resistivity variation in the crystals. The bulk resistivity of the as-grown crystals ranged from 109 Ωcm to 1010 Ωcm

    Structural and electron transport properties of single-crystalline In2o3 films compensated by Ni acceptors

    No full text
    For device applications, the ability to grow semi-insulating or p-type indium oxide (In2O3) is highly desirable. With this in focus, high quality single-crystalline Ni-doped In2O3 films have been grown by plasma-assisted molecular beam epitaxy and structurally and electrically characterized. Within a concentration range of approximately 1017–1019 cm−3, Ni is fully incorporated in the In2O3 lattice without the formation of secondary phases. At doping higher than roughly 1020 cm−3, secondary phases seem to start forming. No film exhibits p-type conductivity at room temperature. Instead, Ni is shown to be a deep compensating acceptor—confirming theoretical calculations, the effect of which only becomes apparent after annealing in oxygen. Combined Hall and Seebeck measurements reveal the compensation of bulk donors already at low Ni concentrations (∼1018 cm−3) and a residual film conductance due to mainly the interface region to the substrate. This residual conductance is gradually pinched off with increasing Ni doping, eventually resulting in semi-insulating films at excessive Ni concentrations (∼1021 cm−3)

    Die Hollanditphase im System BaO-AL2O3-Mg0-TiO2

    No full text

    3D X-ray Microscopy of Ultrasonically Welded Aluminum/Fiber-Reinforced Polymer Hybrid Joints

    No full text
    Ultrasonically welded hybrid aluminum/fiber-reinforced PEEK joints were analyzed non-destructively with an X-ray microscope. The potential and limitations of the technology as a non-destructive testing method were investigated. For a quantitative evaluation, joints with suitable and unsuitable parameters were compared. For a further comparison, geometric modifications of the joining partners were made, and the influence on the structure and process variation of the resulting hybrid joints was examined on a microscopic level. By using a tool for 3D segmentation of the composition of the joining zone, quantitative information on volume-specific proportions could be obtained and compared in relation to each other
    • …
    corecore