2,836 research outputs found

    Quantification of soil mapping by digital analysis of LANDSAT data

    Get PDF
    Soil survey mapping units are designed such that the dominant soil represents the major proportion of the unit. At times, soil mapping delineations do not adequately represent conditions as stated in the mapping unit descriptions. Digital analysis of LANDSAT multispectral scanner (MSS) data provides a means of accurately describing and quantifying soil mapping unit composition. Digital analysis of LANDSAT MSS data collected on 9 June 1973 was used to prepare a spectral soil map for a 430-hectare area in Clinton County, Indiana. Fifteen spectral classes were defined, representing 12 soil and 3 vegetation classes. The 12 soil classes were grouped into 4 moisture regimes based upon their spectral responses; the 3 vegetation classes were grouped into one all-inclusive class

    Correlation of Spectral Classes Derived from Landsat MSS Data to Soil Series and Soil Conditions for Jasper County, Indiana

    Get PDF
    The process of soil survey has been an on-going program in the United States since the early 1930\u27s with aerial photography greatly increasing the speed and accuracy of the survey. Recent innovations in remote sensing techniques have offered the soil scientist a tool to aid in surveying the soils of this country and the world. Recent work utilizing computer-aided analysis of Landsat MSS data resulted in a spectral soils map of Jasper County, Indiana. This map displayed fifty-two spectral classes which represented the soils found within six distinct parent material areas. A correlation of the spectral classes with the soils and soil conditions was achieved by inventorying soils on twenty-eight 160-acre randomly chosen sites. The soils data and spectral data were manually overlaid and a dot grid count was made to determine the relative percentages of soils within each spectral class. From these percentages a descriptive legend was developed identifying the dominant soils represented by the spectral class as well as soils that represent significant inclusions. In addition to developing a legend for each spectral class, various factors involved in the analysis and interpretation of remotely sensed data for soil survey were identified. These factors included: soil-vegetation complexes, crusting of the surface soil, subhorizon exposure, soil surface moisture, organic matter content, texture, and free sand on the surface. Of these, soil-vegetation complexes presented the most widespread problem in interpreting the spectral data. The other factors all altered the spectral response of the soil to some degree, but their influence appeared rather localized

    The BFKL Pomeron in 2+1 Dimensional QCD

    Get PDF
    We investigate the high-energy scattering in the spontaneously broken Yang - Mills gauge theory in 2+1 space--time dimensions and present the exact solution of the leading lns\ln s BFKL equation. The solution is constructed in terms of special functions using the earlier results of two of us (L.N.L. and L.S.). The analytic properties of the tt-channel partial wave as functions of the angular momentum and momentum transfer have been studied. We find in the angular momentum plane: (i) a Regge pole whose trajectory has an intercept larger than 1 and (ii) a fixed cut with the rightmost singularity located at j=1j=1. The massive Yang - Mills theory can be considered as a theoretical model for the (non-perturbative) Pomeron. We study the main structure and property of the solution including the Pomeron trajectory at momentum transfer different from zero. The relation to the results of M. Li and C-I. Tan for the massless case is discussed.Comment: 28 pages LATEX, 3 EPS figures include

    Three-dimensional magnetic flux-closure patterns in mesoscopic Fe islands

    Get PDF
    We have investigated three-dimensional magnetization structures in numerous mesoscopic Fe/Mo(110) islands by means of x-ray magnetic circular dichroism combined with photoemission electron microscopy (XMCD-PEEM). The particles are epitaxial islands with an elongated hexagonal shape with length of up to 2.5 micrometer and thickness of up to 250 nm. The XMCD-PEEM studies reveal asymmetric magnetization distributions at the surface of these particles. Micromagnetic simulations are in excellent agreement with the observed magnetic structures and provide information on the internal structure of the magnetization which is not accessible in the experiment. It is shown that the magnetization is influenced mostly by the particle size and thickness rather than by the details of its shape. Hence, these hexagonal samples can be regarded as model systems for the study of the magnetization in thick, mesoscopic ferromagnets.Comment: 12 pages, 11 figure

    On the interpretation of spin-polarized electron energy loss spectra

    Full text link
    We study the origin of the structure in the spin-polarized electron energy loss spectroscopy (SPEELS) spectra of ferromagnetic crystals. Our study is based on a 3d tight-binding Fe model, with constant onsite Coulomb repulsion U between electrons of opposite spin. We find it is not the total density of Stoner states as a function of energy loss which determines the response of the system in the Stoner region, as usually thought, but the densities of Stoner states for only a few interband transitions. Which transitions are important depends ultimately on how strongly umklapp processes couple the corresponding bands. This allows us to show, in particular, that the Stoner peak in SPEELS spectra does not necessarily indicate the value of the exchange splitting energy. Thus, the common assumption that this peak allows us to estimate the magnetic moment through its correlation with exchange splitting should be reconsidered, both in bulk and surface studies. Furthermore, we are able to show that the above mechanism is one of the main causes for the typical broadness of experimental spectra. Finally, our model predicts that optical spin waves should be excited in SPEELS experiments.Comment: 11 pages, 7 eps figures, REVTeX fil

    Shaping Robust System through Evolution

    Full text link
    Biological functions are generated as a result of developmental dynamics that form phenotypes governed by genotypes. The dynamical system for development is shaped through genetic evolution following natural selection based on the fitness of the phenotype. Here we study how this dynamical system is robust to noise during development and to genetic change by mutation. We adopt a simplified transcription regulation network model to govern gene expression, which gives a fitness function. Through simulations of the network that undergoes mutation and selection, we show that a certain level of noise in gene expression is required for the network to acquire both types of robustness. The results reveal how the noise that cells encounter during development shapes any network's robustness, not only to noise but also to mutations. We also establish a relationship between developmental and mutational robustness through phenotypic variances caused by genetic variation and epigenetic noise. A universal relationship between the two variances is derived, akin to the fluctuation-dissipation relationship known in physics

    Modularity in signaling systems

    Get PDF
    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications

    On the Resummation of the αln2zTermsforQEDCorrectionstoDeepInelastic\alpha \ln^2 z Terms for QED Corrections to Deep-Inelastic epScatteringand Scattering and e^+e^-$ Annihilation

    Full text link
    The resummation of the αln2(z)\alpha \ln^2(z) non-singlet contributions is performed for initial state QED corrections. As examples, the effect of the resummation on neutral-current deep-inelastic scattering and the e+eμ+μe^+ e^- \rightarrow \mu^+ \mu^- scattering cross section near the Z0Z^0-peak is investigated.Comment: 11 pages Latex, including 3 eps-figure

    Double-logs, Gribov-Lipatov reciprocity and wrapping

    Full text link
    We study analytical properties of the five-loop anomalous dimension of twist-2 operators at negative even values of Lorentz spin. Following L. N. Lipatov and A. I. Onishchenko, we have found two possible generalizations of double-logarithmic equation, which allow to predict a lot of poles of anomalous dimension of twist-2 operators at all orders of perturbative theory from the known results. Second generalization is related with the reciprocity-respecting function, which is a single-logarithmic function in this case. We have found, that the knowledge of first orders of the reciprocity-respecting function gives all-loop predictions for the highest poles. Obtained predictions can be used for the reconstruction of a general form of the wrapping corrections for twist-2 operators.Comment: 17 pages, references adde

    Discrete molecular dynamics simulations of peptide aggregation

    Get PDF
    We study the aggregation of peptides using the discrete molecular dynamics simulations. At temperatures above the alpha-helix melting temperature of a single peptide, the model peptides aggregate into a multi-layer parallel beta-sheet structure. This structure has an inter-strand distance of 0.48 nm and an inter-sheet distance of 1.0 nm, which agree with experimental observations. In this model, the hydrogen bond interactions give rise to the inter-strand spacing in beta-sheets, while the Go interactions among side chains make beta-strands parallel to each other and allow beta-sheets to pack into layers. The aggregates also contain free edges which may allow for further aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure
    corecore