36 research outputs found

    Direct Imaging of Ultrafast Charge Carrier Dynamics in Semiconducting Nanowires Using Two-Photon Excitation and Spatially-Separated Pump-Probe Microscopy

    Get PDF
    The increasing use of nanoscale materials in scientific research and device design places a greater emphasis on characterizing the heterogeneity of nanostructures. When designing electronic components around the use of individual nanoparticles, it is important to understand variability between seemingly identical particles produced in the same synthesis. To do this, we have developed an ultrafast optical microscope capable of studying single nanostructures with spatial resolution of hundreds of nanometers. Emission images of zinc oxide needle-like nanowires show a modulated pattern along the long axis of the wire that are attributed to the coupling of the optical field into structurally dependent resonance modes. Simulations suggest that these are size dependent hybrid modes, containing character of both whispering gallery and Fabry-Perot modes. By incorporating transient absorption pump-probe techniques into the microscope design, we can observe the recombination dynamics of excited carriers on femtosecond timescales following excitation. Due to the high resolution of the instrument, it is possible to observe the dynamics at different locations within a single nanostructure. This technique is used to study the correlation between the decay kinetics of silicon nanowires and doping density for a variety of surface treatments. The motion of excited carriers in silicon nanowires was directly imaged by holding the pump beam in a particular location and scanning the probe beam over the entire structure. The resulting images show free carriers spreading out from the area of excitation, leaving the immobile trapped carriers behind.Doctor of Philosoph

    Pharmacokinetic and exposure-response analysis of pertuzumab in patients with HER2-positive metastatic gastric or gastroesophageal junction cancer

    Get PDF
    Purpose: To characterize the pharmacokinetics (PK) of pertuzumab and trastuzumab in patients with HER2-positive metastatic gastric or gastroesophageal junction cancer in the randomized, double-blind, phase III JACOB study (NCT01774786), and to evaluate the appropriateness of the pertuzumab regimen in these patients. Methods: Patients received 840 mg intravenous pertuzumab or placebo plus trastuzumab q3w and chemotherapy. Pertuzumab and trastuzumab were administered until disease progression or unacceptable toxicity. Chemotherapy was administered for up to six cycles or disease progression or unacceptable toxicity. Serum concentrations of pertuzumab and trastuzumab were measured. Pertuzumab PK was characterized across treatment cycles. The impact of anti-drug antibodies (ADAs) on pertuzumab PK and the impact of pertuzumab on trastuzumab PK were assessed. An exploratory exposure-efficacy analysis was also conducted. Results: In total, 374 patients in the pertuzumab arm had evaluable PK data. The mean observed pertuzumab steady-state serum trough (minimum) concentration (C) ± standard deviation was 114 ± 51.8 μg/mL. The target pertuzumab C of ≥ 20 μg/mL was reached in 99.3% of patients at Cycle 5 (steady state) and beyond. Greater than 90% of patients were above the PK target right after the first pertuzumab dose. There was no apparent impact of ADAs on pertuzumab PK nor of pertuzumab on trastuzumab PK. There were no differences in overall survival across Cycle 1 pertuzumab (C) or Cycle 5 pertuzumab (C) exposure quartiles. Conclusions: Pertuzumab exposure in JACOB was consistent with prior studies in advanced gastric cancer and breast cancer. The 840 mg q3w dose allowed the majority of patients in JACOB to achieve target pertuzumab concentrations and appears to be an appropriate dose selectio

    The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents

    Get PDF
    Major advances in carrier-mediated agents, which include nanoparticles, nanosomes and conjugates, have revolutionized drug delivery capabilities over the past decade. While providing numerous advantages, such as greater solubility, duration of exposure and delivery to the site of action over their small-molecule counterparts, there is substantial variability in systemic clearance and distribution, tumor delivery and pharmacologic effects (efficacy and toxicity) of these agents. This review provides an overview of factors that affect the pharmacokinetics and pharmacodynamics of carrier-mediated agents in preclinical models and patients

    Factors Affecting the Pharmacokinetics and Pharmacodynamics of PEGylated Liposomal Irinotecan (IHL-305) in Patients with Advanced Solid Tumors

    Get PDF
    IHL-305 is a PEGylated liposomal formulation of irinotecan (CPT-11). The objective of this study was to evaluate the factors associated with interpatient variability in the pharmacokinetics and pharmacodynamics of IHL-305 in patients with advanced solid tumors. IHL-305 was administered intravenously once every 4 weeks as part of a Phase I study. Pharmacokinetic studies of the liposomal sum total CPT-11, released CPT-11, SN-38, SN-38G, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin, and 7-ethyl-10-[4-amino-1-piperidino]-carbonyloxycamptothecin in plasma were performed. Noncompartmental and compartmental pharmacokinetic analyses were conducted using pharmacokinetic data for sum total CPT-11. The pharmacokinetic variability of IHL-305 is associated with linear and nonlinear clearance. Patients whose age and body composition (ratio of total body weight to ideal body weight [TBW/IBW]) were greater than the median age and TBW/IBW of the study had a 1.7-fold to 2.6-fold higher ratio of released CPT-11 area under the concentration versus time curve (AUC) to sum total CPT-11 AUC. Patients aged \u3c60 years had a 1.3-fold higher ratio of percent decrease in monocytes at nadir to percent decrease in absolute neutrophil count at nadir as compared with patients aged ≥60 years. There was an inverse relationship between patient age and percent decrease in monocytes at nadir, ie, younger patients have a higher percent decrease in monocytes. Patients with a higher percent decrease in monocytes at nadir have a decreased plasma exposure of sum total CPT-11. The pharmacokinetics and pharmacodynamics of IHL-305 are consistent with those of other PEGylated liposomal carriers. Interpatient variability in the pharmacokinetics and pharmacodynamics of IHL-305 was associated with age, body composition, and monocytes

    Taxonomy of GRB optical light-curves: identification of a salient class of early afterglows

    Full text link
    The temporal behaviour of the early optical emission from Gamma-Ray Burst afterglows can be divided in four classes: fast-rising with an early peak, slow-rising with a late peak, flat plateaus, and rapid decays since first measurement. The fast-rising optical afterglows display correlations among peak flux, peak epoch, and post-peak power-law decay index that can be explained with a structured outflow seen off-axis, but the shock origin (reverse or forward) of the optical emission cannot be determined. The afterglows with plateaus and slow-rises may be accommodated by the same model, if observer location offsets are larger than for the fast-rising afterglows, or could be due to a long-lived injection of energy and/or ejecta in the blast-wave. If better calibrated with more afterglows, the peak flux-peak epoch relation exhibited by the fast and slow-rising optical light-curves could provide a way to use this type of afterglows as standard candles.Comment: 8 pages, submitted to MNRA

    Pharmacokinetic and exploratory exposure-response analysis of pertuzumab in patients with operable HER2-positive early breast cancer in the APHINITY study

    Get PDF
    Purpose: To characterize the pharmacokinetics (PK) of, and perform an exploratory exposure–response (E–R) analysis for, pertuzumab in patients with HER2-positive early breast cancer (EBC) within the APHINITY study (NCT01358877, BIG 4–11/BO25126/TOC4939G). Methods: A previously developed pertuzumab two-compartment linear population pharmacokinetic (popPK) model was subjected to external validation to examine appropriateness for describing pertuzumab concentrations from the APHINITY study. Pharmacokinetic drug–drug interactions (DDIs) between pertuzumab, trastuzumab, and chemotherapy were assessed by comparing observed serum or plasma Cmax, Cmin, and AUClast geometric mean ratios with 90% CIs. Predictions of pertuzumab Cmax,ss, Cmin,ss, and AUCss were derived from individual parameter estimates and used in an exploratory E–R analysis. Results: Using data from 72 patients, based on goodness-of-fit, the popPK model was deemed appropriate for predictions of individual exposures for subsequent comparisons to historical data, assessment of DDIs, and E–R analyses. No evidence of DDIs for pertuzumab on trastuzumab, trastuzumab on pertuzumab, or pertuzumab on chemotherapy PK was observed. Analyses of differences in exposure between patients with and without invasive disease-free survival events did not indicate improved efficacy with increased exposure. Overall Grade ≥ 3 diarrhea prevalence was higher with pertuzumab versus placebo, but was not greater with increasing pertuzumab exposure. No apparent E–R relationship was suggested with respect to other grade ≥ 3 AEs. Conclusion: Overall, the limited available data from this exploratory study suggest that no dose adjustments are needed for pertuzumab when administered in combination with trastuzumab and an EBC chemotherapy regimen

    Factors affecting the pharmacokinetics and pharmacodynamics of PEGylated liposomal irinotecan (IHL-305) in patients with advanced solid tumors

    No full text
    Huali Wu,1 Jeffrey R Infante,2 Vicki L Keedy,3 Suzanne F Jones,2 Emily Chan,3 Johanna C Bendell,2 Wooin Lee,4 Whitney P Kirschbrown,1 Beth A Zamboni,5 Satoshi Ikeda,6 Hiroshi Kodaira,6 Mace L Rothenberg,3 Howard A Burris III,2 William C Zamboni1,7–9 1UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 2Sarah Cannon Research Institute/Tennessee Oncology, PLLC, 3Vanderbilt University, Nashville, TN, 4Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 5Department of Mathematics, Carlow University, Pittsburgh, PA, USA; 6Yakult Honsha Co., Ltd., Medical Development Department, Tokyo, Japan; 7UNC Lineberger Comprehensive Cancer Center, 8UNC Institute for Pharmacogenomics and Individualized Therapy, 9Carolina Center for Cancer Nanotechology Excellence, University of North Carolina, Chapel Hill, NC, USA Abstract: IHL-305 is a PEGylated liposomal formulation of irinotecan (CPT-11). The objective of this study was to evaluate the factors associated with interpatient variability in the pharmacokinetics and pharmacodynamics of IHL-305 in patients with advanced solid tumors. IHL-305 was administered intravenously once every 4 weeks as part of a Phase I study. Pharmacokinetic studies of the liposomal sum total CPT-11, released CPT-11, SN-38, SN-38G, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]-carbonyloxycamptothecin, and 7-ethyl-10-[4-amino-1-piperidino]-carbonyloxycamptothecin in plasma were performed. Noncompartmental and compartmental pharmacokinetic analyses were conducted using pharmacokinetic data for sum total CPT-11. The pharmacokinetic variability of IHL-305 is associated with linear and nonlinear clearance. Patients whose age and body composition (ratio of total body weight to ideal body weight [TBW/IBW]) were greater than the median age and TBW/IBW of the study had a 1.7-fold to 2.6-fold higher ratio of released CPT-11 area under the concentration versus time curve (AUC) to sum total CPT-11 AUC. Patients aged <60 years had a 1.3-fold higher ratio of percent decrease in monocytes at nadir to percent decrease in absolute neutrophil count at nadir as compared with patients aged ≥60 years. There was an inverse relationship between patient age and percent decrease in monocytes at nadir, ie, younger patients have a higher percent decrease in monocytes. Patients with a higher percent decrease in monocytes at nadir have a decreased plasma exposure of sum total CPT-11. The pharmacokinetics and pharmacodynamics of IHL-305 are consistent with those of other PEGylated liposomal carriers. Interpatient variability in the pharmacokinetics and pharmacodynamics of IHL-305 was associated with age, body composition, and monocytes. Keywords: PEGylated liposome, irinotecan, CPT-11, IHL-305, pharmacokinetics, monocyte
    corecore