55 research outputs found

    Saccharomyces cerevisiae Mre11 is a high-affinity G4 DNA-binding protein and a G-rich DNA-specific endonuclease: implications for replication of telomeric DNA

    Get PDF
    In Saccharomyces cerevisiae, Mre11p/Rad50p/Xrs2p (MRX) complex plays a vital role in several nuclear processes including cellular response to DNA damage, telomere length maintenance, cell cycle checkpoint control and meiotic recombination. Telomeres are comprised of tandem repeats of G-rich DNA and are incorporated into non-nucleosomal chromatin. Although the structure of the yeast telomeric DNA is poorly understood, it has been suggested that the G-rich sequences can fold into G4 DNA, which has been shown to inhibit DNA synthesis by telomerase. However, little is known about the factors and mechanistic aspects of the generation of appropriate termini for DNA synthesis by telomerase. Here, we show that S.cerevisiae Mre11 protein (ScMre11p) possesses substantially higher binding affinity for G4 DNA, over single- or double-stranded DNA, and binding was inhibited by poly(dG) or porphyrin. Binding of ScMre11p to G4 DNA was most robust, compared with G2′ DNA and the resulting protein–DNA complexes were strikingly very resistant to dissociation by NaCl. Remarkably, binding of ScMre11p to G4 DNA and G-rich single-stranded DNA was accompanied by the endonucleolytic cleavage at sites flanking the array of G residues and G-quartets in Mn(2+)-dependent manner. Collectively, these results suggest that ScMre11p is likely to play a major role in generating appropriate substrates for DNA synthesis by telomerase and telomere-binding proteins. We discuss the implications of these findings with regard to telomere length maintenance by telomerase-dependent and independent mechanisms

    Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis

    Get PDF
    The synaptonemal complex (SC) is a tripartite protein structure consisting of two parallel axial elements (AEs) and a central region. During meiosis, the SC connects paired homologous chromosomes, promoting interhomologue (IH) recombination. Here, we report that, like the CE component Zip1, Saccharomyces cerevisiae axial-element structural protein, Red1, can bind small ubiquitin-like modifier (SUMO) polymeric chains. The Red1–SUMO chain interaction is dispensable for the initiation of meiotic DNA recombination, but it is essential for Tel1- and Mec1-dependent Hop1 phosphorylation, which ensures IH recombination by preventing the inter-sister chromatid DNA repair pathway. Our results also indicate that Red1 and Zip1 may directly sandwich the SUMO chains to mediate SC assembly. We suggest that Red1 and SUMO chains function together to couple homologous recombination and Mec1–Tel1 kinase activation with chromosome synapsis during yeast meiosis

    Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae

    No full text
    Background: Vegetatively dividing cells of Saccharomyces cerevisiae carrying a mutation in RAD50 grow significantly more slowly in rich medium and are sensitive to DNA damage inflicted by X-ray or chemical mutagens. RAD50 function is essential for the formation and repair of meiosis-specific double-strand breaks and chromosome stability. Results: We present evidence for two new phenotypes associated with the rad50Δ mutant; shortened telomeres and cell senescence. Comparison of TG1-3 telomeric sequences in an isogenic pair of RAD50 and rad50Δ haploid strains showed that they were considerably shortened in the latter. Although rad50Δ mutation conferred cell enlargement and slow growth, cell doubling was faster but caused an increase in the frequency of cell death. Telomeres were restored to the wild-type size in hemizygous RAD50/rad50Δ and rad50S/rad50Δ strains; however, they showed a significant increase in rad50S/rad50S diploid with a concomitant rise in cell viability. Telomeres were stabilized in hemizygous RAD50/rad50Δ and rad50S/rad50Δ diploids during prolonged growth, suggesting that even a half-dosage of RAD50 is sufficient to conserve the telomere size during successive cell divisions. Furthermore, cells bearing the rad50Δ mutation revealed abnormalities in nuclear segregation and, in the presence of hydroxyurea, displayed phenotypes consistent with defects in S-phase checkpoint control. Conclusion: This report presents evidence of the involvement of a gene relevant to recombinational repair in the maintenance of telomeres.We conclude that the phenotypes displayed by yeast rad50Δ cells have intriguing similarities among the human cell lines representing DNA repair-deficient chromosome instability syndromes

    Telomere structure, replication and length maintenance

    No full text
    Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium

    DNA-Binding Activities of Hop1 Protein, a Synaptonemal Complex Component from Saccharomyces cerevisiae

    Get PDF
    The meiosis-specific HOP1 gene is important both for crossing over between homologs and for production of viable spores. hop1 diploids fail to assemble synaptonemal complex (SC), which normally provides the framework for meiotic synapsis. Immunochemical methods have shown that the 70-kDa HOP1 product is a component of the SC. To assess its molecular function, we have purified Hop1 protein to homogeneity and shown that it forms dimers and higher oligomers in solution. Consistent with the zinc-finger motif in its sequence, the purified protein contained about 1 mol equivalent of zinc whereas mutant protein lacking a conserved cysteine within this motif did not. Electrophoretic gel mobility shift assays with different forms of M13 DNA showed that Hop1 binds more readily to linear duplex DNA and negatively superhelical DNA than to nicked circular duplex DNA and even more weakly to single-stranded DNA. Linear duplex DNA binding was enhanced by the addition of Zn(2+), was stronger for longer DNA fragments, and was saturable to about 55 bp/protein monomer. Competitive inhibition of this binding by added oligonucleotides suggests preferential affinity for G-rich sequences and weaker binding to poly(dA-dT). Nuclear extracts of meiotic cells caused exonucleolytic degradation of linear duplex DNA if the extracts were prepared from hop1 mutants; addition of purified Hop1 conferred protection against this degradation. These findings suggest that Hop1 acts in meiotic synapsis by binding to sites of double-strand break formation and helping to mediate their processing in the pathway to meiotic recombination

    Genetic regulation of telomere-telomere fusions in the yeast Saccharomyces cerevisae

    Get PDF
    Yeast strains with mutations in both TEL1 and MEC1 have short telomeres and elevated rates of chromosome deletions. By using a PCR assay, we demonstrate that mec1 tel1 strains also have telomere–telomere fusions (T-TFs). T-TFs require Lig4p (a ligase required for nonhomologous end-joining DNA repair). The highest rates of T-TFs are found in strains with combination of mutations that affect telomere length and DNA damage checkpoints (mec1 tel1, mec3 tel1, mre11 mec1, and ddc1 tel1 strains). Examining many mutant genotypes, we find good agreement between the level of T-TFs and the rate of chromosomal deletions. In addition, if telomeres are elongated in a mec1 tel1 strain, we eliminate T-TFs and reduce the deletion rate. The correlation between the level of T-TFs and the rate of deletions argues that many of these deletions reflect a cycle of T-TF formation (resulting in dicentric chromosomes), followed by chromosome breakage
    corecore