62 research outputs found
A gene expression profile for detection of sufficient tumour cells in breast tumour tissue: microarray diagnosis eligibility
<p>Abstract</p> <p>Background</p> <p>Microarray diagnostics of tumour samples is based on measurement of prognostic and/or predictive gene expression profiles. Typically, diagnostic profiles have been developed using bulk tumour samples with a sufficient amount of tumour cells (usually >50%). Consequentially, a diagnostic results depends on the minimal percentage of tumour cells within a sample. Currently, tumour cell percentage is assessed by conventional histopathological review. However, even for experienced pathologists, such scoring remains subjective and time consuming and can lead to ambiguous results.</p> <p>Methods</p> <p>In this study we investigated whether we could use transcriptional activity of a specific set of genes instead of histopathological review to identify samples with sufficient tumour cell content. Genome-wide gene expression measurements were used to develop a transcriptional gene profile that could accurately assess a sample's tumour cell percentage.</p> <p>Results</p> <p>Supervised analysis across 165 breast tumour samples resulted in the identification of a set of 13 genes which expression correlated with presence of tumour cells. The developed gene profile showed a high performance (AUC 0.92) for identification of samples that are suitable for microarray diagnostics. Validation on 238 additional breast tumour samples indicated a robust performance for correct classification with an overall accuracy of 91 percent and a kappa score of 0.63 (95%CI 0.47–0.73).</p> <p>Conclusion</p> <p>The developed 13-gene profile provides an objective tool for assessment whether a breast cancer sample contains sufficient tumour cells for microarray diagnostics. It will improve the efficiency and throughput for diagnostic gene expression profiling as it no longer requires histopathological analysis for initial tumour percentage scoring. Such profile will also be very use useful for assessment of tumour cell percentage in biopsies where conventional histopathology is difficult, such as fine needle aspirates.</p
Androgen receptor phosphorylation at serine 515 by Cdk1 predicts biochemical relapse in prostate cancer patients
<br>Background:Prostate cancer cell growth is dependent upon androgen receptor (AR) activation, which is regulated by specific kinases. The aim of the current study is to establish if AR phosphorylation by Cdk1 or ERK1/2 is of prognostic significance.</br> <br>Methods: Scansite 2.0 was utilised to predict which AR sites are phosphorylated by Cdk1 and ERK1/2. Immunohistochemistry for these sites was then performed on 90 hormone-naive prostate cancer specimens. The interaction between Cdk1/ERK1/2 and AR phosphorylation was investigated in vitro using LNCaP cells.</br><br>Results:Phosphorylation of AR at serine 515 (pAR(S515)) and PSA at diagnosis were independently associated with decreased time to biochemical relapse. Cdk1 and pCdk1(161), but not ERK1/2, correlated with pAR(S515). High expression of pAR(S515) in patients with a PSA at diagnosis of ≤20 ng ml(-1) was associated with shorter time to biochemical relapse (P=0.019). This translated into a reduction in disease-specific survival (10-year survival, 38.1% vs 100%, P<0.001). In vitro studies demonstrated that treatment with Roscovitine (a Cdk inhibitor) caused a reduction in pCdk1(161) expression, pAR(S515)expression and cellular proliferation.</br> <br>Conclusion: In prostate cancer patients with PSA at diagnosis of ≤20 ng ml(-1), phosphorylation of AR at serine 515 by Cdk1 may be an independent prognostic marker.</br>
Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release
Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by
dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC
prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves
partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process.
In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization
(LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in
response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We
showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers
LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetateinduced
apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces
LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate
as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors.This work was supported by the Fundação para a
Ciência e Tecnologia (FCT) research project PTDC/BIA-BCM/69448/2006 and FCT
PhD grants for SA (SFRH/BD/64695/2009) and CO (SFRH/BD/77449/2011). This
work was also supported by FEDER through POFC—COMPETE, and by national
funds from FCT through the project PEst-C/BIA/UI4050/2011
Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy
Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence
Genetic Variability of Human Respiratory Syncytial Virus A Strains Circulating in Ontario: A Novel Genotype with a 72 Nucleotide G Gene Duplication
Human respiratory syncytial virus (HRSV) is the main cause of acute lower respiratory infections in children under 2 years of age and causes repeated infections throughout life. We investigated the genetic variability of RSV-A circulating in Ontario during 2010–2011 winter season by sequencing and phylogenetic analysis of the G glycoprotein gene
Femara® and the future: tailoring treatment and combination therapies with Femara
Long-term estrogen deprivation treatment for breast cancer can, in some patients, lead to the activation of alternate cellular pathways, resulting in the re-emergence of the disease. This is a distressing scenario for oncologists and patients, but recent intensive molecular and biochemical studies are beginning to unravel these pathways, revealing opportunities for new targeted treatments. Far from making present therapies redundant, these new discoveries open the door to novel combination therapies that promise to provide enhanced efficacy or overcome treatment resistance. Letrozole, one of the most potent aromatase inhibitors, is the ideal candidate for combination therapy; indeed, it is one of the most intensively studied aromatase inhibitors in the evolving combinatorial setting. Complementary to the use of combination therapy is the development of molecular tools to identify patients who will benefit the most from these new treatments. Microarray gene profiling studies, designed to detect letrozole-responsive targets, are currently under way to understand how the use of the drug can be tailored more efficiently to specific patient needs
Recombination between Polioviruses and Co-Circulating Coxsackie A Viruses: Role in the Emergence of Pathogenic Vaccine-Derived Polioviruses
Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence
Prolactin-induced mouse mammary carcinomas model estrogen resistant luminal breast cancer.
INTRODUCTION: Tumors that express estrogen receptor alpha (ERα+) comprise 75% of breast cancers in women. While treatments directed against this receptor have successfully lowered mortality rates, many primary tumors initially or later exhibit resistance. The paucity of murine models of this luminal tumor subtype has hindered studies of factors that promote their pathogenesis and modulate responsiveness to estrogen-directed therapeutics. Since epidemiologic studies closely link prolactin and the development of ERα+ tumors in women, we examined characteristics of the aggressive ERα+ and ERα- carcinomas which develop in response to mammary prolactin in a murine transgenic model (neu-related lipocalin- prolactin (NRL-PRL)). To evaluate their relationship to clinical tumors, we determined phenotypic relationships among these carcinomas, other murine models of breast cancer, and features of luminal tumors in women.
METHODS: We examined a panel of prolactin-induced tumors for characteristics relevant to clinical tumors: histotype, ERα/progesterone receptor (PR) expression and estrogen responsiveness, Activating Protein 1 (AP-1) components, and phosphorylation of signal transducer and activator of transcription 5 (Stat5), extracellular signal regulated kinase (ERK) 1/2 and AKT. We compared levels of transcripts in the ERα-associated luminal signature that defines this subtype of tumors in women and transcripts enriched in various mammary epithelial lineages to other well-studied genetically modified murine models of breast cancer. Finally, we used microarray analyses to compare prolactin-induced ERα+ and ERα- tumors, and examined responsiveness to estrogen and the anti-estrogen, Faslodex, in vivo.
RESULTS: Prolactin-induced carcinomas were markedly diverse with respect to histotype, ERα/PR expression, and activated signaling cascades. They constituted a heterogeneous, but distinct group of murine mammary tumors, with molecular features of the luminal subtype of human breast cancer. In contrast to morphologically normal and hyperplastic structures in NRL-PRL females, carcinomas were insensitive to ERα-mediated signals. These tumors were distinct from mouse mammary tumor virus (MMTV)-neu tumors, and contained elevated transcripts for factors associated with luminal/alveolar expansion and differentiation, suggesting that they arose from physiologic targets of prolactin. These features were shared by ERα+ and ERα- tumors, suggesting a common origin, although the former exhibited transcript profiles reflecting greater differentiation.
CONCLUSIONS: Our studies demonstrate that prolactin can promote diverse carcinomas in mice, many of which resemble luminal breast cancers, providing a novel experimental model to examine the pathogenesis, progression and treatment responsiveness of this tumor subtype
Potential Benefits of Sequential Inhibitor-Mutagen Treatments of RNA Virus Infections
Lethal mutagenesis is an antiviral strategy consisting of virus extinction associated with enhanced mutagenesis. The use of non-mutagenic antiviral inhibitors has faced the problem of selection of inhibitor-resistant virus mutants. Quasispecies dynamics predicts, and clinical results have confirmed, that combination therapy has an advantage over monotherapy to delay or prevent selection of inhibitor-escape mutants. Using ribavirin-mediated mutagenesis of foot-and-mouth disease virus (FMDV), here we show that, contrary to expectations, sequential administration of the antiviral inhibitor guanidine (GU) first, followed by ribavirin, is more effective than combination therapy with the two drugs, or than either drug used individually. Coelectroporation experiments suggest that limited inhibition of replication of interfering mutants by GU may contribute to the benefits of the sequential treatment. In lethal mutagenesis, a sequential inhibitor-mutagen treatment can be more effective than the corresponding combination treatment to drive a virus towards extinction. Such an advantage is also supported by a theoretical model for the evolution of a viral population under the action of increased mutagenesis in the presence of an inhibitor of viral replication. The model suggests that benefits of the sequential treatment are due to the involvement of a mutagenic agent, and to competition for susceptible cells exerted by the mutant spectrum. The results may impact lethal mutagenesis-based protocols, as well as current antiviral therapies involving ribavirin
- …