5,528 research outputs found
Investigating the intrinsic noise limit of Dayem bridge NanoSQUIDs
NanoSQUIDs made from Nb thin films have been produced with nanometre loop sizes down to 200 nm, using weak-link junctions with dimensions less than 60 nm. These composite (W/Nb) single layer thin film devices, patterned by FIB milling, show extremely good low-noise performance ∼170 nΦ0 at temperatures between 5 and 8.5 K and can operate in rather high magnetic fields (at least up to 1 T). The devices produced so far have a limited operating temperature range, typically only 1–2 K. We have the goal of achieving operation at 4.2 K, to be compatible with the best SQUID series array (SSA) preamplifier available. Using the SSA to readout the nanoSQUIDs provides us with a means of investigating the intrinsic noise of the former. In this paper we report improved white noise levels of these nanoSQUIDs, enabling potential detection of a single electronic spin flip in a 1-Hz bandwidth. At low frequencies the noise performance is already limited by SSA preamplifier noise
Bodyspace at the pub: sexual orientations and organizational space
In this article we argue that sexuality is not only an undercurrent of service environments, but is integral to the way that these workspaces are experienced and negotiated. Through drawing on Sara Ahmed’s (2006a) ‘orientation’ thesis, we develop a concept of ‘bodyspace’ to suggest that individuals understand, shape and make meaning of work spaces through complex sexually-orientated negotiations. Presenting analysis from a study of UK pubs, we explore bodyspace in the lived experience of workplace sexuality through three elements of orientation: background; bodily dwelling; and lines of directionality. Our findings show how organizational spaces afford or mitigate possibilities for particular bodies, which simultaneously shape expectations and experiences of sexuality at work. Bodyspace therefore provides one way of exposing the connection between sexual ‘orientation’ and the lived experience of service sector work
Comparison of optical model results from a microscopic Schr\"odinger approach to nucleon-nucleus elastic scattering with those from a global Dirac phenomenology
Comparisons are made between results of calculations for intermediate energy
nucleon-nucleus scattering for 12C, 16O, 40Ca, 90Zr, and 208Pb, using optical
potentials obtained from global Dirac phenomenology and from a microscopic
Schr\"odinger model. Differential cross sections and spin observables for
scattering from the set of five nuclei at 65 MeV and 200 MeV have been studied
to assess the relative merits of each approach. Total reaction cross sections
from proton-nucleus and total cross sections from neutron-nucleus scattering
have been evaluated and compared with data for those five targets in the energy
range 20 MeV to 800 MeV. The methods of analyses give results that compare well
with experimental data in those energy regimes for which the procedures are
suited.Comment: 22 pages, 12 figure
Impact of D0-D0bar mixing on the experimental determination of gamma
Several methods have been devised to measure the weak phase gamma using
decays of the type B+- --> D K+-, where it is assumed that there is no mixing
in the D0-D0bar system. However, when using these methods to uncover new
physics, one must entertain the real possibility that the measurements are
affected by new physics effects in the D0-D0bar system. We show that even
values of x_D and/or y_D around 10^{-2} can have a significant impact in the
measurement of sin^2{gamma}. We discuss the errors incurred in neglecting this
effect, how the effect can be checked, and how to include it in the analysis.Comment: 18 pages, Latex with epsfig, 8 figure
Basins of attraction on random topography
We investigate the consequences of fluid flowing on a continuous surface upon
the geometric and statistical distribution of the flow. We find that the
ability of a surface to collect water by its mere geometrical shape is
proportional to the curvature of the contour line divided by the local slope.
Consequently, rivers tend to lie in locations of high curvature and flat
slopes. Gaussian surfaces are introduced as a model of random topography. For
Gaussian surfaces the relation between convergence and slope is obtained
analytically. The convergence of flow lines correlates positively with drainage
area, so that lower slopes are associated with larger basins. As a consequence,
we explain the observed relation between the local slope of a landscape and the
area of the drainage basin geometrically. To some extent, the slope-area
relation comes about not because of fluvial erosion of the landscape, but
because of the way rivers choose their path. Our results are supported by
numerically generated surfaces as well as by real landscapes
Thrombosis Is Reduced by Inhibition of COX-1, but Unaffected by Inhibition of COX-2, in an Acute Model of Platelet Activation in the Mouse
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Baryon Acoustic Oscillations in the Ly{\alpha} forest of BOSS DR11 quasars
We report a detection of the baryon acoustic oscillation (BAO) feature in the
flux-correlation function of the Ly{\alpha} forest of high-redshift quasars
with a statistical significance of five standard deviations. The study uses
137,562 quasars in the redshift range  from the Data Release
11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III.
This sample contains three times the number of quasars used in previous
studies. The measured position of the BAO peak determines the angular distance,
 and expansion rate, , both on a scale set by the sound
horizon at the drag epoch, . We find
 and
 where . The optimal
combination,  is determined with a precision of
. For the value , consistent with the CMB power
spectrum measured by Planck, we find 
and . Tests with mock
catalogs and variations of our analysis procedure have revealed no systematic
uncertainties comparable to our statistical errors. Our results agree with the
previously reported BAO measurement at the same redshift using the
quasar-Ly{\alpha} forest cross-correlation. The auto-correlation and
cross-correlation approaches are complementary because of the quite different
impact of redshift-space distortion on the two measurements. The combined
constraints from the two correlation functions imply values of  and
 that are, respectively, 7% low and 7% high compared to the
predictions of a flat CDM cosmological model with the best-fit Planck
parameters. With our estimated statistical errors, the significance of this
discrepancy is .Comment: Accepted for publication in A&A. 17 pages, 18 figure
- …
