303 research outputs found

    High Frequency Ultrasonic Imaging

    Get PDF
    High frequency ultrasonic imaging is considered by many to be the next frontier in ultrasound. It has many clinical applications ranging from imaging the eye and skin to small animal imaging. Small animal imaging has recently generated intense interest for the purpose of evaluating the efficacy of drugs and gene therapy. Commercial high frequency scanners often termed “ultrasonic biomicroscope”, or UBM, all use mechanically scanned single element transducers at frequencies between 30 to 60 MHz with a frame rate of 30 frames/second or lower. To alleviate problems with UBMs which include mechanical motion and fixed focusing, high frequency linear arrays and imaging systems in the 20–50 MHz range have been developed. In this paper, current efforts in the development of high frequency ultrasonic imaging will be reviewed and potential biomedical applications discussed

    Ultrasound array photoacoustic microscopy for dynamic in vivo 3D imaging

    Get PDF
    Using realtime ultrasound array photoacoustic microscopy (UA-PAM), we demonstrated the feasibility of noninvasive in vivo imaging of human pulsatile dynamics, as well as 3-D dynamic imaging of sentinel lymph nodes (SLNs) in a murine model. The system, capable of realtime B-scan imaging at 50 Hz and high-speed 3-D imaging, was validated by imaging the subcutaneous microvasculature in rats and humans. After the validation, a human superficial palmar was imaged, and its pulsatile dynamics monitored, with 20-ms B-scan imaging temporal resolution. In addition, noninvasive photoacoustic sentinel lymph node (SLN) mapping with high spatial resolution has the potential to reduce the false negative rate and eliminate the use of radioactive tracers. Upon intra-dermal injection of Evans blue, the system maps SLNs accurately in mice and rats. Furthermore, the ~6 s 3-D imaging temporal resolution offers the capability to quantitatively and noninvasively monitor the dye dynamics in SLNs in vivo through sequential 3-D imaging. The demonstrated capability suggests that high-speed 3-D photoacoustic imaging should facilitate the understanding of the dynamics of various dyes in SLNs, and potentially help identify SLNs with high accuracy. With the results shown in this study, we believe that UA-PAM can potentially enable many new possibilities for studying functional and physiological dynamics in both preclinical and clinical imaging settings

    Fast 3-D photoacoustic imaging in vivo with a high frequency ultrasound array toward clinical applications

    Get PDF
    We present an in vivo reflection-mode photoacoustic microscopy system that performs B-scan imaging at 50 Hz with realtime beamforming and 3-D imaging of 166 B-scan frames at 1 Hz with post-beamforming. To our knowledge, this speed is currently the fastest in high frequency photoacoustic imaging. In addition, with a custom fiber based light delivery system, the imaging device is capable of performing handheld operation. Software for image processing and display with clinically user-friendly graphic user interface (GUI) is developed. The system has axial, lateral, and elevational resolutions of 25, 70, and 200 μm, respectively, and can image 3 mm deep in scattering biological tissue. Volumetric images of subcutaneous vasculature in murine are demonstrated in vivo. The system is anticipated to have potential clinical applications in skin melanoma detection due to its unique ability to image in realtime and to image anatomical sites inaccessible to other imaging systems

    Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array

    Get PDF
    We present an in vivo dark-field reflection-mode photoacoustic microscopy system that performs cross-sectional (B-scan) imaging at 50Hz with real-time beamforming and 3-D imaging consisting of 166 B-scan frames at 1Hz with postbeamforming. To our knowledge, this speed is currently the fastest in photoacoustic imaging. A custom-designed light delivery system is integrated with a 30-MHz ultrasound linear array to realize dark-field reflection-mode imaging. Linear mechanical scanning of the array produces 3-D images. The system has axial, lateral, and elevational resolutions of 25, 70, and 200μm, respectively, and can image 3mm deep in scattering biological tissues. Volumetric images of subcutaneous vasculature in rats are demonstrated in vivo. Fast 3-D photoacoustic microscopy is anticipated to facilitate applications of photoacoustic imaging in biomedical studies that involve dynamics and clinical procedures that demand immediate diagnosis

    Multimodality imaging in vivo for preclinical assessment of tumor-targeted doxorubicin nanoparticles.

    Get PDF
    This study presents a new multimodal imaging approach that includes high-frequency ultrasound, fluorescence intensity, confocal, and spectral imaging to improve the preclinical evaluation of new therapeutics in vivo. Here we use this approach to assess in vivo the therapeutic efficacy of the novel chemotherapy construct, HerDox during and after treatment. HerDox is comprised of doxorubicin non-covalently assembled in a viral-like particle targeted to HER2+ tumor cells, causing tumor cell death at over 10-fold lower dose compared to the untargeted drug, while sparing the heart. Whereas our initial proof-of-principle studies on HerDox used tumor growth/shrinkage rates as a measure of therapeutic efficacy, here we show that multimodal imaging deployed during and after treatment can supplement traditional modes of tumor monitoring to further characterize the particle in tissues of treated mice. Specifically, we show here that tumor cell apoptosis elicited by HerDox can be monitored in vivo during treatment using high frequency ultrasound imaging, while in situ confocal imaging of excised tumors shows that HerDox indeed penetrated tumor tissue and can be detected at the subcellular level, including in the nucleus, via Dox fluorescence. In addition, ratiometric spectral imaging of the same tumor tissue enables quantitative discrimination of HerDox fluorescence from autofluorescence in situ. In contrast to standard approaches of preclinical assessment, this new method provides multiple/complementary information that may shorten the time required for initial evaluation of in vivo efficacy, thus potentially reducing the time and cost for translating new drug molecules into the clinic

    A 3-D High-Frequency Array Based 16 Channel Photoacoustic Microscopy System for In Vivo Micro-Vascular Imaging

    Get PDF
    This paper discusses the design of a novel photoacoustic microscopy imaging system with promise for studying the structure of tissue microvasculature for applications in visualizing angiogenesis. A new 16 channel analog and digital high-frequency array based photoacoustic microscopy system (PAM) was developed using an Nd: YLF pumped tunable dye laser, a 30 MHz piezo composite linear array transducer, and a custom multichannel receiver electronics system. Using offline delay and sum beam- forming and beamsteering, phantom images were obtained from a 6 µm carbon fiber in water at a depth of 8 mm. The measured -6 dB lateral and axial spatial resolution of the system was 100 ± 5 µm and 45 ± 5 µm, respectively. The dynamic focusing capability of the system was demonstrated by imaging a composite carbon fiber matrix through a 12.5 mm imaging depth. Next, 2-D in vivo images were formed of vessels around 100 µm in diameter in the human hand. Three-dimensional in vivo images were also formed of micro-vessels 3 mm below the surface of the skin in two Sprague Dawley rats

    Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy

    Get PDF
    A realtime photoacoustic microscopy system consisting of a high-repetition rate pulsed laser, high-frequency (30 MHz) ultrasound array transducer, and realtime receiving system was used to visualize microvessels pulsations over a cardiac cycle. The system offers 100 μm lateral spatial resolution, 25 µm axial spatial resolution, and can image at a rate of 83 frames per second. The system shows promise for visualizing time-varying processes in the microvasculature

    In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA

    Get PDF
    Imaging of cell nuclei plays a critical role in cancer diagnosis and prognosis. To image noninvasively cell nuclei in vivo without staining, we developed UV photoacoustic microscopy (UV-PAM), in which 266nm wavelength UV light excites unlabeled DNA and RNA in cell nuclei to produce photoacoustic waves. We applied UV-PAM to ex vivo imaging of cell nuclei in a mouse lip and a mouse small intestine and to in vivo imaging of the cell nuclei in the mouse skin. The UV-PAM images of unstained cell nuclei match the optical micrographs of the histologically stained cell nuclei. Given intrinsic optical contrast and high spatial resolution, in vivo label-free UV-PAM has potential for unique biological and clinical application
    corecore