504 research outputs found

    Meissner screening mass in two-flavor quark matter at nonzero temperature

    Get PDF
    We calculate the Meissner screening mass of gluons 4--7 in two-flavor quark matter at nonzero temperature. To this end, we study the effective potential of the 2SC/g2SC phases including a vector condensate andcalculatetheMeissnermassfromthepotentialcurvaturewithrespectto and calculate the Meissner mass from the potential curvature with respect to . We find that the Meissner mass becomes real at the critical temperature which is about the half of the chemical potential mismatch. The phase diagram of the neutral two-flavor color superconductor is presented in the plane of temperature and coupling strength. We indicate the unstable region for gluons 4--7 on the phase diagram.Comment: 4 pages, 3 figures, minor revisions to text, version to appear in PR

    Chromomagnetic instability in two-flavor quark matter at nonzero temperature

    Get PDF
    We calculate the effective potential of the 2SC/g2SC phases including vector condensates (and and ) and study the gluonic phase and the single plane-wave Larkin-Ovchinnikov-Fulde-Ferrell state at nonzero temperature. Our analysis is performed within the framework of the gauged Nambu--Jona-Lasinio model. We compute potential curvatures with respect to the vector condensates and investigate the temperature dependence of the Meissner masses squared of gluons of color 4--7 and 8 in the neutral 2SC/g2SC phases. The phase diagram is presented in the plane of temperature and coupling strength. The unstable regions for gluons 4--7 and 8 are mapped out on the phase diagram. We find that, apart from the case of strong coupling, the 2SC/g2SC phases at low temperatures are unstable against the vector condensation until the temperature reaches tens of MeV.Comment: 10 pages, 10 figures, revisions to text, published in Phys. Rev.

    Current quark mass effects on chiral phase transition of QCD in the improved ladder approximation

    Get PDF
    Current quark mass effects on the chiral phase transition of QCD is studied in the improved ladder approximation. An infrared behavior of the gluon propagator is modified in terms of an effective running coupling. The analysis is based on a composite operator formalism and a variational approach. We use the Schwinger-Dyson equation to give a ``normalization condition'' for the Cornwall-Jackiw-Tomboulis effective potential and to isolate the ultraviolet divergence which appears in an expression for the quark-antiquark condensate. We study the current quark mass effects on the order parameter at zero temperature and density. We then calculate the effective potential at finite temperature and density and investigate the current quark mass effects on the chiral phase transition. We find a smooth crossover for T>0T>0, μ=0\mu=0 and a first-order phase transition for μ>0\mu>0, T=0. Critical exponents are also studied and our model gives the classical mean-field values. We also study the temperature dependence of masses of scalar and pseudoscalar bosons. A critical end point in the TT-μ\mu plane is found at T100T \sim 100 MeV, μ300\mu \sim 300 MeV.Comment: 19 pages, 13 figure

    Chiral phase transition at high temperature in the QCD-like gauge theory

    Get PDF
    The chiral phase transition at high temperature is investigated using the effect ive potential in the framework of the QCD-like gauge theory with a variational a pproach. We have a second order phase transition at Tc=136T_c=136MeV. We also investigate numerically the temperature dependence of condensate, fπf_\pi a nd a2(T)a_2(T)(coefficient of the quadratic term in the effective potential) and es timate the critical exponents of these quantities.Comment: 12 pages,7 figure

    Diquark condensation effects on hot quark star configurations

    Full text link
    The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation.We investigate the effects of a variation of the formfactors of the interaction on the phase diagram of quark matter. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state under the condition of beta- equilibrium and charge neutrality. We calculate the quark star configurations by solving the Tolman- Oppenheimer- Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of Delta M c^2 ~ 10^{53} erg. We find that this energy could not serve as an engine for explosive phenomena since the phase transition is not first order. Contrary to naive expectations the mass defect increases when for a given temperature we neglect the possibility of diquark condensation.Comment: 24 pages, 2 tables, 8 figures, references added, figures and text improve

    Universality, the QCD critical/tricritical point and the quark number susceptibility

    Get PDF
    The quark number susceptibility near the QCD critical end-point (CEP), the tricritical point (TCP) and the O(4) critical line at finite temperature and quark chemical potential is investigated. Based on the universality argument and numerical model calculations we propose a possibility that the hidden tricritical point strongly affects the critical phenomena around the critical end-point. We made a semi-quantitative study of the quark number susceptibility near CEP/TCP for several quark masses on the basis of the Cornwall-Jackiw-Tomboulis (CJT) potential for QCD in the improved-ladder approximation. The results show that the susceptibility is enhanced in a wide region around CEP inside which the critical exponent gradually changes from that of CEP to that of TCP, indicating a crossover of different universality classes.Comment: 18 pages, 10 figure

    Opportunities for TeV Laser Acceleration

    Get PDF
    A set of ballpark parameters for laser, plasma, and accelerator technologies that define for electron energies reaching as high as TeV are identified. These ballpark parameters are carved out from the fundamental scaling laws that govern laser acceleration, theoretically suggested and experimentally explored over a wide range in the recent years. In the density regime on the order of 10^{16} cm^{-3}, the appropriate laser technology, we find, matches well with that of a highly efficient high fluence LD driven Yb ceramic laser. Further, the collective acceleration technique applies to compactify the beam stoppage stage by adopting the beam-plasma wave deceleration, which contributes to significantly enhance the stopping power and energy recovery capability of the beam. Thus we find the confluence of the needed laser acceleration parameters dictated by these scaling laws and the emerging laser technology. This may herald a new technology in the ultrahigh energy frontier.Comment: 16 pages, 2 figures, 1 table, submitted to AIP Conference Proceeding

    Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model

    Full text link
    We derive the effective potentials for composite operators in a Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in each case they are equivalent to the corresponding effective potentials based on an auxiliary scalar field. The both effective potentials could lead to the same possible spontaneous breaking and restoration of symmetries including chiral symmetry if the momentum cutoff in the loop integrals is large enough, and can be transformed to each other when the Schwinger-Dyson (SD) equation of the dynamical fermion mass from the fermion-antifermion vacuum (or thermal) condensates is used. The results also generally indicate that two effective potentials with the same single order parameter but rather different mathematical expressions can still be considered physically equivalent if the SD equation corresponding to the extreme value conditions of the two potentials have the same form.Comment: 7 pages, no figur
    corecore