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Abstract 
A set of ballpark parameters for laser, plasma, and accelerator technologies 

that define for electron energies reaching as high as TeV are identified. These ballpark 

parameters are carved out from the fundamental scaling laws that govern laser 

acceleration, theoretically suggested and experimentally explored over a wide range in 

the recent years. In the density regime on the order of 1016 cm-3, the appropriate laser 

technology, we find, matches well with that of a highly efficient high fluence LD driven 

Yb ceramic laser. Further, the collective acceleration technique applies to compactify 

the beam stoppage stage by adopting the beam-plasma wave deceleration, which 

contributes to significantly enhance the stopping power and energy recovery capability 

of the beam. Thus we find the confluence of the needed laser acceleration parameters 

dictated by these scaling laws and the emerging laser technology. This may herald a 

new technology in the ultrahigh energy frontier.  

 

1. Introduction 

 Since the laser based particle acceleration was conceived [1], energies of laser 

accelerated electrons have increased with the advance of laser technologies and better 

control and understanding of the experiments [2-12]. Leemans et al. reported one GeV 

laser acceleration of electrons using 40 TW, 40 fs laser pulses with a 3 cm plasma 

channel [2]. With these and other past experiments it is now evident that the laser 

accelerated electron energies scale as predicted by Tajima and Dawson [1]. The laser 

accelerated electron energy scales inversely proportional to the plasma electron 
density

€ 

ne . An experimental data summary is shown in Fig. 1. This figure shows this 

energy gain renormalized appropriately by the laser intensity (see below about this 
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normalization) as a function of the plasma density

€ 

ne : Unmistakably, the energy gain 

rises continually and linearly, as the electron density falls. This presents us opportunities 

to consider a design of experiments toward 10 GeV, 100 GeV, and 1 TeV energies based 

on laser wakefield acceleration, following the simple and yet robust scaling law. In 

particular we can identify ballpark parameters required for TeV electron and positron 

acceleration. We find the required laser parameters match well the present or near-term 

laser technologies: our design principles encounter opportune novel techniques to lower 

required laser parameters. 

 

 

2. Scaling laws 
 Summarized here are the scaling laws of laser wakefield acceleration that 

have been theoretically presented and experimentally observed in the past works 

[13][14] . If we take the scaling law according to Esarey and Sprangle [13], the energy 

gain of electrons per plasma stage, 

€ 

ΔE , is approximately expressed as 

2 2 2 2 2
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                         (1) 

where 

€ 

m0 is the electron rest mass, 

€ 

c  is the speed of light, 

€ 

a0 = eE0 /m0ω0c  is the 

normalized vector potential of the pump laser with the electric field of 

€ 

E0 and the 

frequency of 

€ 

ω0, 

€ 

γ ph = 1− vph
2 /c 2( )

−1/ 2
 and 

€ 

vph  is the phase velocity of the wakefield, 

€ 

ncr and 

€ 

ne are the critical density and the plasma density, respectively.  This is based 

on a simple and yet robust theory of nonlinear wakefield that is one-dimensional. The 

reason for this may be seen from a simple argument as follows: the original energy gain 
theory of Tajima and Dawson gives 

€ 

ΔE = mc 2γ ph
2 . If electrons that participate in 

making up the accelerating longitudinal fields have gained their momentum (primarily 

in the longitudinal direction) by a factor of a0
2, their mass m takes the value of m0a0

2. 

Obviously, in more realistic cases three-dimensional phenomena become important 

particularly when we try to preserve a good quality wakefield structure over many 

oscillation periods. On the other hand, in a relatively strong drive, the wave assumes a 

steep profile and thus once again nearly one-dimensional physics might become 

important in the immediate vicinity of this sharp gradient. In cases that we experienced 
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in the past works such is not out of the question. In fact Koga et al.’s simulation [15] 

saw a steep wave gradient and much flattened wave front even though his laser pulse 

was relatively narrow (see Figure 2): The frontal part of the wave is appropriate for 

accelerating positrons [16] (or other positively charged particles), while the rear part for 

electrons (not all the parameters in Ref. [15] scale with what we suggest here). We 

believe that we still need much research to hone the parameters and fashion to reach 

such developments.� For the sake of proof-of-principle experiments perfectly ideal 

realization may have to be forgone in favor of realizable ballpark parameters to gain a 

glimpse into really high energy regimes.  

The acceleration length is limited by the dephasing length or the pump 

depletion length. The dephasing and pump depletion lengths are given by [13] 

2
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where 

€ 

λp = π /rene  is the linear and nonrelativistic plasma wavelength and 

€ 

re is the 
classical electron radius. Here 

€ 

λp  is defined without the relativistic mass effect.� The 

good condition for laser wakefield excitation is realized when the laser pulse length 

€ 

cτ  

matches this plasma wavelength, i.e.  
/ 2pcτ λ≈ .                            (6) 

The peak power of the laser P is 

€ 

P = Iπw0
2 , where 

€ 

I  is the peak irradiance of the laser. 

The total laser energy 

€ 

EL = Pτ  necessary in the first case (quasi-one dimensional case) 

is expressed as  

.                  (7)  

In cases when three dimensional effects are important (e. g. ) the 

energy obtained by laser acceleration may become slightly more complicated. Consider 

the case when the laser pulse is intense enough to make a cavity behind the laser pulse, 
i.e. 

€ 

a0 > eϕ /(mc 2) , where 

€ 

ϕ ≈ 4πneew0
2  is the electrostatic potential of the wake. 

According to a study [17], in this case 

2 2 4
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2 2
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where the laser spot size 

€ 

w0 is related to  

€ 

w0 ≈
1
π
γ phλ0                               (9) 

and the cavity longitudinal size is of the order of the transverse size, 0w . In this tightly 

focused case, optical guiding is required to extend the acceleration length. According to 
Ref. [18], the matched spot size 

€ 

wM  in the capillary, which has a radial plasma density 

profile 

€ 

ne(r) = n0 + Δne(r /R)2 , is  
1/ 42

M
e e

Rw
r nπ

 
=  Δ 

,                           (10) 

where R is the radius of the capillary wall. If we set  in order to 

avoid self-focusing or filamentation of the pump pulse, the accelerated energy is scaled 
as . In any case as shown in Fig.1 the energy of electrons scales as inversely 

proportional to the plasma density. This is also observed in Ref. [19]. These tendencies 

are in agreement with Eq. (1) and also Eq. (2).  

 

3. Ballpark parameters of laser electron accelerator toward TeV 
We point out that the scaling law dictates some two orders of magnitude 

density reduction from most current experimental parameters in order to carry out�

experiments in the range toward energies of TeV in a single stage, with the typical 

density at 1016 cm-3. This in turn allows us to extend the laser pulse length by an order 

of magnitude, to typically ps, instead of tens of fs. The preferred laser technology of 

recent laser acceleration experiments has been that of Ti:sapphire because of its large 

frequency bandwidth. In spite of its superiority in its bandwidth, it has some problems 

such as relatively poor quantum efficiency. The choice parameters we present here 

allow us to introduce a different laser technology that matches better for the purpose of 

higher energy acceleration toward TeV. The technology we suggest is that of a laser 

diode-pumped Yb ceramic laser. This laser operates well in the ballpark of ps laser pulse 

and has high quantum efficiency and large fluence, which are important ingredients for 

high energy acceleration.  As we find, the required laser acceleration scaling and this 

laser technology match well.  

Here we take a few typical numerical examples at various initial laser 

intensities as listed in Table 1. We range the laser intensity, or the normalized vector 
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potential a0 that is related to the intensity. If we take 

€ 

a0= 10, 

€ 

ne = 5.7 ×1016 cm-3, 

€ 

λ0=1 µm we reach 1 TeV energy in a single stage using Eq. (1).  We have chosen the 

spot size of 32 µm which is ~1/4 of the linear nonrelativistic plasma wavelength to relax 

the laser energy requirement. We know this choice does not match one-dimensional 

scaling laws because the spot size is smaller than this plasma wavelength. However, in 

the nonlinear regime of the wakefield, a single cycle of the wake is used for acceleration, 

and the actual excited structure might be similar to that predicted by one-dimensional 

theory [13]. We point out that there has been no detailed simulation work in this 

ballpark because of the huge computational resources required. Clearly this is one of the 

very important future research topics to optimize the acceleration conditions in this 

regime. Under the current choice of ballpark the laser parameters are 0.5 kJ, 2.2 PW, 

and 0.23 ps. This is the case studied in TableⅠ(a) case Ⅰ. The acceleration length is 

~3 m. In this choice the required laser pulse may strain the existing laser technology, as 

we shall discuss below. To ameliorate such a situation, the introduction of the 

nonuniform plasma density profile with a density initially lower than the value taken 

here might bring in some room to maneuver: the laser pulse compression may take 

place through the nonlinear interaction with the plasma [20] to fit more adequately and 

gradually increase the density to the value considered here.  

If we decrease the laser intensity to take the value of a0=3.2(TableⅠ(a)case

Ⅱ), the optimum density is 5.7x1015cm-3. In the following we keep the ratio of the spot 

size to the plasma wavelength the same as that in case I.  The required laser parameters 

are 1.6 kJ, 2.2 PW, and 0.74 ps. The acceleration length is 29 m. Further reduction of 

laser intensity results in longer acceleration length and larger laser energy as seen in 

case III in Table 1 (a). Also listed in Table 1 (b) is a study of three dimensional cases.  

 

4. Yb laser technologies 
       These ballpark parameters for the accelerator lead to a suggestion of a laser 

that is robust in the pulse range of ps. As we indicated above, the acceleration toward 

the energies of TeV, our choice of plasma density is on the order of 1016 cm-3, which 

dictates the optimal laser pulse length on the order of O(1) ps. This is as opposed to the 

currently popular tens of fs pulses that are typically good for GeV or less energies 

driven by Ti:sapphire lasers. This implies an important point that we are now 

emancipated from the fs laser demand and look for a different set of technologies that 
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allow some broader ranges of tolerance and different requirements such as higher 

fluence, higher efficiency, higher energy, etc. We suggest that a technology that globally 

meets with the need if we adopt the laser-diode (LD) pumped ytterbium (Yb)-doped 

ceramic laser (with a more radically different option on the horizon).  

 The Yb laser is a good compromise between the high energy Nd:glass lasers 

and the ultrabroadband Ti:sapphire lasers. Yb has a few times lower quantum defect 

(<10%) compared with Nd:glass. The broad absorption spectra of Yb match the 

emission bands of high-power InGaAs LD, which ensure approximately ten times 

higher efficiency compared to Ti:sapphire lasers. The fluorescence lifetime of Yb is 

about a few hundred times longer than that of Ti (msec vs. µsec), allowing for an 

enhancement of energy storage.  

 The recent progress of Yb ceramic laser [21] allows us to look for a large 

aperture thin disk design. The thin disk laser concept is a laser design for a LD pumped 

solid-state laser which allows the realization of lasers with high output energy, high 

efficiency and good beam quality, simultaneously [22]. Especially, the generation and 

amplification of ultra-short pulses are possible with huge laser energy and high 

efficiency [22]. We note that if we strain some of the laser parameters such as the pulse 

length (to make it shorter), the acceleration length is greatly shortened and can 

contribute to even more compact accelerators. On the other hand, such a choice will 

severely test the Yb laser technology to stomach the broader bandwidth operation. More 

recently, Yb-doped ceramics laser materials with an almost perfect pore-free structure 

was realized by advanced ceramics processing [21]. Ceramics as laser material have 

several remarkable advantages over single crystals. For example, samples with high 

doping concentration and of large sizes can be more easily fabricated, whereas this is 

usually difficult for crystals. The cost of ceramic laser materials can be potentially much 

lower than their single crystal counterparts because of their faster fabrication process 

and possibility of mass production. Moreover, the rigid bonding of multiple samples is 

easy with these materials; thus the design flexibility for novel laser devices is greatly 

enhanced (In fact we have developed some techniques to do so).  

 The technique of chirped-pulse amplification (CPA) and recompression may 

enable Yb-doped ceramic laser systems to provide pulses around 1 picosecond. Pulse 

duration in a CPA system is determined primarily by the laser output spectrum. If we 

introduce mixed-ceramic amplifiers, the effective gain spectral bandwidth should be 
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increased and hence the reduction in pulse duration to well below 1 picosecond should 

be possible [23]. 

 The properties of the LD directly pumped Yb-doped ceramic laser open the 

way to a completely new class of compact, robust, and cost effective short pulsed laser 

systems with highest output energies, highest efficiency, best beam quality, and high 

repetition rate. 

 In addition to the LD pumped Yb-doped ceramic laser technology, many have 

suggested alternatives such as fiber lasers, diode pumped alkaline lasers, etc. It is 

exciting to have many alternative suggestions that are now emerging for candidates of 

high power high fluence lasers that may fit the specifications for ultrahigh energy laser 

accelerators.   

 

5. Compact decelerator in the TeV range 
 

In order for a high energy accelerator system to be much more compact than 

following the conventional designs, it is necessary not only to make the accelerator 

compact, but also to make the beam dump section to be compact.  For this purpose, we 

introduce the concept of a passive plasma decelerator at the end of the use of the high 

energy beam by immersing the beams to be decelerated into an appropriately designed 

plasma that is surrounded by a waveguide structure that has the right impedance and 
coupling to the oscillating plasma and extracts its electric energy. （For a linear collider, 

a critical problem has been its extensive power consumption. Once a TeV beam is 

established, luminosity is basically proportional to the power consumption. One way to 

ameliorate this problem is to convert the energy of one pulse of the spent TeV beam 

into microwaves, and utilize these microwaves to accelerate the next beam pulse）. 

As one very first step of the above idea, it is necessary to decelerate a 

TeV-beam by some mechanism, and then convert the beam energy into microwaves. 

Here we consider the possibility of decelerating the TeV-beam by a plasma. The beam 

deposits its energy as a plasma wave of a certain plasma frequency. A passive 

microwave structure next to the beam passage then couples with the plasma oscillation. 

If the plasma frequency coincides with the microwave frequency of the structure, a 

microwave is excited by the oscillating plasma. As compared with this, the conventional 

approach of the beam decelerator is the beam dump. This is to use the single particle 
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interaction between the high energy charged particles (such as electrons) and solid or 

liquid targets. Because of the single particle interaction in high energy regimes, its 

stopping length becomes large. In addition, the beam radiates copious radiation in the 

surroundings during the stopping as well as the stopping materials become radioactive 

in the end. In the design of the International Linear Collider, a water dump and a noble 

gas dump are under consideration, in which the electrons lose their energy via 

bremsstrahlung and the following e--e+ pair creations. Our suggested method radically 

departs from this single particle interaction approach of the past. We resort, just as in 

the accelerating stage we are proposing, to use the collective electromagnetic force 

arising in the plasma. Just like in the acceleration, the collective force in the 

deceleration can be large. As Chen et al. have suggested [24] using an electron beam to 

drive wakefields in a plasma for the purpose of acceleration, the decelerating field is 

similar just reversing the accelerating process in terms of energy flow.  In fact both the 

accelerating and the decelerating processes have been demonstrated in the recent SLAC 

experiment [25]. Furthermore since they are of collective nature, they are well 

organized and amenable to direct energy recovery into electricity. However, unlike the 

conventional energy recovery linac (ERL) utilizing superconducting technology [26], 

we recognize that it is no longer possible to bend TeV electron (positrons) orbits back to 

the original superconducting duct that accelerated the beam. Here the decelerator is in 

the down stream. The decelerating plasma is immersed in and coupled to a high-Q 

waveguide structure with appropriate impedance. Given a plasma of density ne, its 

plasma frequency is given by .  Here it may be assumed that the 

entering gas such as Helium have the electron density of  and its ionization is 

incurred by the entering intense electron beam each time. Given the TeV-beam, its 
decelerating gradient in the plasma is 

€ 

Gdec, which is on the order of the Tajima-Dawson 

field of 

€ 

Gdec ~ m0ω pc /e.                     (11) 

The plasma oscillation will last for time τp, which is the inverse of the Landau damping 
decrement 

€ 

γL  before extraction of energy of the excited waveguide mode. A coupling 

window between the microwave (more accurately THz waves) structure and the plasma 

medium allows the plasma to fill the structure with microwave. (If we assume a plasma 

density of 1014 cm-3, the exciting rf wave becomes 90 GHz, which is a familiar 
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frequency as W-band and many industrial components are available.) A traveling wave 

rf structure is to be designed that couples into this plasma rf source. The input plasma rf 

power will be fed into the structure with critical coupling so that there is no reflected 
power. The higher the plasma temperature, the smaller the τp is due to the Landau 

damping. We dictate that the energy extraction time from the waveguide shorter that 
this damping time of τp. The details are provided by Chao and Tajima [27]. 

 

 

6. Discussion and conclusions 

 Even though what we suggest here is merely a crude outline for a 

proof-of-principle experimentation, it is possible to gain an uncanny amount of 

knowledge by testing such regimes of laser acceleration. We have already identified 

several key technologies that support the above systems. It is important to investigate 

the validity of the parameter scaling laws further into 100 GeV, and even 1 TeV. The 

stability of the laser pulse over a distance of such magnitude never experienced before 

is a critical question to be examined by experiments and perhaps also by a really huge 

scale simulation.  The propagated laser may be tinted with spectral broadening and 

pulse lengthening (or shortening). It is also of interest to investigate if there are ways to 

further improve the way to excite wakefields and to explore optimal parameter ballpark 

and method of experimentation. If the acceleration conditions that impose requirements 

on laser and the laser technology that can be delivered clash with each other, are there 

ways to navigate the best course of action to compromise? Which parameter or 

parameters can be bent and which cannot? Can we introduce ways novel or otherwise to 

tolerate errors and to invite robustness in certain regimes? Which parameter regimes are 

obstinate to even a small amount of change from the optimal values?  

The focal length of the lens to match the spot size should be taken into 

account when we discuss the size of the whole system. The spot size focused with a 
focal length of 

€ 

f  is expressed as 

€ 

w0 ≈ f /D( )λ0 , where 

€ 

D  is the beam size at 

focusing optics. The damage threshold limits the size of 

€ 

D . For example, usual 

multilayer coating has a damage threshold of ~ 5 J/cm2. This gives D ~16 cm for 

€ 

EL =1 kJ for the quasi-one dimensional case and D ~ 71 cm for 

€ 

EL =20 kJ for 3D case. 

Thus the focal length is ~16 m when 

€ 

w0 =100 µm (quasi-1D) and ~ 320 m when 
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€ 

w0 =450 µm (3D).  

        We can envisage experiments that reach energies of 10 GeV and 100 GeV on 

our way toward still higher energies. In any of these cases the strategy to pick plasma 

density and other subsequent parameters may vary. In an overall tendency we are 

allowed to take higher density, shorter laser pulse, shorter acceleration length, and less 

laser energy in the cases lower than TeV, but with approximately similar power as for 

the TeV acceleration, though clearly there are many easier experiments with other 

aspects emphasized for specific convenience or technological reasons. For example, 

experiments for 10 GeV may not even need any change of laser technology, continuing 

the usage of the Ti:Sapphire and simply extending the acceleration length from O(1) cm 

to O(10) cm. For 100 GeV we may have to reduce the plasma density from the currently 

common 1018-19 cm-3 to the range on the order of 1017 cm-3. Even before we reach 

energies of TeV, at these energies of 10 GeV and 100 GeV with the laser acceleration 

present us unprecedented opportunities of new frontiers in many directions. For 

example, because the laser-driven electron beam pulse is ultrashort in fs or even in as 

regimes, we can make bright coherent X-rays out of 10 GeV laser accelerated electron 

beam that can be generated within a foot size accelerator as opposed to 100 m size 

installations. Such a table-top bright alternative to a synchrotron radiation source may 

become available at each laboratory that needs one. With beams on the order of 100 

GeV, we may entertain a compact and yet serious experiments and facilities that may 

not be imaginable with the conventional technologies. For example, these compact 100 

GeV electrons and a sliced out portion of the laser may be allowed to collide to produce 

bright, collimated, mono-energetic and energy-tunable, Compton-backscattered gamma 

rays. Such gamma ray beams have never been produced before. It is hardly within our 

grasp what discovery awaits us.  In addition with even much lower energies of 

electrons we can explore nuclear physics and energy science relevant issues with 

Compton backscattered gamma rays [28]. We also expect the proposed compact plasma 

decelerator may be of use in not only a future collider but also in lower energy devices.  

        In conclusion we have identified the opportune confluence of the conditions 

for laser acceleration toward 1 TeV and the novel technology of a high energy, high 

power laser of Yb base and the subsequent scientific opportunities that this confluence 

opens up. We also note that it is crucial to reduce the size of the beam dump or more 

elegantly to introduce an energy-recovering compact decelerator at its rear end. A first 
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such a suggestion is made. We face many research tasks that need to be explored to 

realize this opportunity. 
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Hayashi, Dr. I. Daito, Mr. T. Homma, Mr. S. Kondo, and Mr. S. Kanazawa among many 
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Figure and table captions 
 

Figure 1. Electron energy vs. plasma density observed in experiments [2-12]. The solid 
line shows the fitted curve of 

€ 

ΔE /a0
2 /mc 2 = 5.5 ×1021 /ne  gleaned and χ2-matched 

from all these experimental data, and the broken line shows the theoretical scaling 
(

€ 

ΔE /a0
2 /mc 2 =1.7 ×1021 /ne ). 

 

Figure 2. Two dimensional particle-in-cell simulation results reproduced from ref [15] 
for a 19fs 100 TW laser pulse with a wavelength of 0.8µm propagating in an uniform 

plasma of density 5.3x1019 cm-3. After propagating 340c/ωpe, (a) the laser electric field 

with a peak amplitude of a0~13, (b) electron density with a peak of 1.3x1021cm-3, and 

(c) electric field with a peak of 6.5 TeV/m are shown. One can see that the structure is 

nearly one-dimensional. 

 

Table 1. Example parameters for TeV proof-of-principle laser acceleration of electrons 

and positrons. 
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Table 1 (a).  

    case I case II case III 

a0   10 3.2 1 

energy gain  GeV 1000 1000 1000 

plasma density cm-3 5.7x1016 5.7x1015 5.7x1014 

acceleration 

length 
m 2.9 29 290 

spot radius µm 32 100 320 

peak power PW 2.2 2.2 2.2 

pulse duration ps 0.23 0.74 2.3 

laser pulse 
energy 

kJ 0.5 1.6 5 

 

Table 1 (b). 

    case IV case V case VI 

a0   1 1 1 
energy gain  GeV 10 100 1000 

plasma density cm-3 7.0x1016 7.0x1015 7.0x1014 

acceleration 

length 
m 1.8 58 1800 

capillary wall 

diameter 
mm 0.38 1.2 3.8 

spot radius µm 130 400 1300 

peak power PW 0.68 6.8 68 

pulse duration ps 0.21 0.67 2.1 

laser pulse 
energy 

kJ 0.14 1 20 

 

 

 


