35 research outputs found

    Influence of charge carriers on corrugation of suspended graphene

    Get PDF
    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation

    SYNTHESIS OF THICK GALLIUM NITRIDE LAYERS BY METHOD OF MULTI-STAGE GROWTH ON SUBSTRATES WITH COLUMN STRUCTURE

    Get PDF
    Subject of Research.The paper deals with processes of formation and transformation of defects during multi-stage growth of thick gallium nitride layers with hydride vapor phase epitaxy on GaN/Al2O3 substrates with buried column pattern formed with the use of metal-organic vapor phase epitaxy. Methods. The growth of initial GaN layers was performed with the use of metal-organic vapor phase epitaxy. On the surface of the initial layers columns with the height of 800 nm were generated by means of ion etching. These columns were overgrown with 3-4 µm-thick GaN layers. On thus formed substrate multi-stage growth of GaN layers was performed with the use of hydride vapor-phase epitaxy. The total thickness of GaN layers was 100-1500 µm. The grown layers were studied by optical and electron microscopy and Raman spectroscopy. Main Results. Density of threading dislocations in the layers grown by hydride vapor-phase epitaxy was (3-6)·107 cm-2, that was one order of magnitude lower than in the used substrate, and two to three orders lower than dislocation density in typical GaN layers grown on commercial sapphire substrates. Raman spectroscopy data were indicative of low level of mechanical stress in the layers and their high structural uniformity. It was established that under multi-stage growth conditions, non-catastrophic cracks (those that do not cause sample destruction) are able to transform into macropores and appear to be an important structural element, serving to stress relaxation in the bulk of thick gallium nitride layers grown on foreign substrates. Practical Relevance. The results of the study can be used in the development of III-nitride heterostructures for optoelectronics and high-power and high-frequency microelectronics

    Effective Method for Obtaining the Hydrosols of Detonation Nanodiamond with Particle Size < 4 nm

    No full text
    Detonation nanodiamond is a commercially available synthetic diamond that is obtained from the carbon of explosives. It is known that the average particle size of detonation nanodiamond is 4–6 nm. However, it is possible to separate smaller particles. Here we suggest a new approach for the effective separation of detonation nanodiamond particles by centrifugation of a “hydrosol/glycerol” system. The method allows for the production of the detonation nanodiamond hydrosol with a very sharp distribution in size, where more than 85% of particles have a size ranging 1–4 nm. The result is supported by transmission electron microscopy, atomic force microscopy, and dynamic light scattering

    Aminated Graphene Nanomesh: Theoretical and Experimental Insights into Process of Decorating, Topology and Electron Properties

    No full text
    The physicochemical nature of the amino group NH2’s landing on the basal plane of the graphene and on the edge atoms of the graphene nanomesh was revealed. The mechanism of covalent binding between the NH2 groups and the carbon atoms of the graphene and the GNM was discovered in silico by the SCC DFTB method. The maximum amount ratio of the amino groups to carbon atoms equaled 4.8% for GNM and 4.6% for the basal plane. The established values of the concentration and the trend of change in the work function of electrons are experimentally confirmed

    Aminated Graphene Nanomesh: Theoretical and Experimental Insights into Process of Decorating, Topology and Electron Properties

    No full text
    The physicochemical nature of the amino group NH2’s landing on the basal plane of the graphene and on the edge atoms of the graphene nanomesh was revealed. The mechanism of covalent binding between the NH2 groups and the carbon atoms of the graphene and the GNM was discovered in silico by the SCC DFTB method. The maximum amount ratio of the amino groups to carbon atoms equaled 4.8% for GNM and 4.6% for the basal plane. The established values of the concentration and the trend of change in the work function of electrons are experimentally confirmed
    corecore