1,338 research outputs found
Productivity, profitability and intensity of labor: Russia and the OECD
The problem of raising the productivity of labor has been a priority of the ruling elite for decades. This problem was acute in imperial Russia where there were only the beginnings of industrialization, in the communist economy, mainly with ideological underpinnings. With time, the problem has not been solved, whereas the mechanisms of impact have become more complex and many factors of influence affecting this indicator have emerged. The study assesses the productivity, profitability, and intensity of labor in Russia and the OECD countries between 2000 and 2014. Numerous studies show that higher productivity and labor intensity contribute to structural changes in the economy; the flow of reallocation processes in the labor market affect the welfare of the population. Labor profitability and labor intensity have a big impact on the economic and society and employment. This indicates the important role of the indicators of labor efficiency, which is the main reason for their combined assessment. By means of descriptive analysis the author revealed that the level of the indices of Russiaβs economy is the lowest, while the intensity of labor has been increasing. The dynamic aspect shows that the highest labor productivity and profitability growth during the analyzed period is observed in Russia. In addition, a comparison of the rate of growth of labor yields and an increase in foreign direct investment showed that the greatest capital growth observed in those areas occurs in the areas where labor profitability increases. Therefore, the long-term economic policy should focus on the performance indicators of labor: productivity, profitability, intensity. As a result, positive aspects are observed not only in overall economic development, but also in part, in the inflow of investment to the territory, which is necessary in todayβs situation.ΠΡΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° ΡΡΠΎΠΈΡ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΏΠ»Π°Π½Π΅ Ρ ΠΏΡΠ°Π²ΡΡΠ΅ΠΉ ΡΠ»ΠΈΡΡ ΡΠΆΠ΅ Π½Π΅ ΠΎΠ΄Π½ΠΎ Π΄Π΅ΡΡΡΠΈΠ»Π΅ΡΠΈΠ΅. ΠΠ°Π½Π½Π°Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° Π±ΡΠ»Π° Π°ΠΊΡΡΠ°Π»ΡΠ½Π° Π² ΠΈΠΌΠΏΠ΅ΡΡΠΊΠΎΠΉ Π ΠΎΡΡΠΈΠΈ, Π³Π΄Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎΡΠ²Π»ΡΠ»ΠΈΡΡ Π·Π°ΡΠ°ΡΠΊΠΈ ΠΈΠ½Π΄ΡΡΡΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ, Π² ΠΊΠΎΠΌΠΌΡΠ½ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅, Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΈΠΌΠ΅Ρ ΠΈΠ΄Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΡΡ ΠΏΠΎΠ΄ΠΎΠΏΠ»Π΅ΠΊΡ. Π‘ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° Π½Π΅ Π±ΡΠ»Π° ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΡΠ΅ΡΠ΅Π½Π°, Π»ΠΈΡΡ ΡΡΠ»ΠΎΠΆΠ½ΡΠ»ΠΈΡΡ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΈ ΠΏΠΎΡΠ²Π»ΡΠ»ΠΈΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΊΡΠΎΡΠΎΠ², Π²Π»ΠΈΡΡΡΠΈΡ
Π½Π° Π΄Π°Π½Π½ΡΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° Π² Π ΠΎΡΡΠΈΠΈ ΠΈ Π² ΡΡΡΠ°Π½Π°Ρ
ΠΠΠ‘Π . ΠΠ΅ΡΠΈΠΎΠ΄ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Ρ 2000 ΠΏΠΎ 2014 Π³ΠΎΠ΄. ΠΠ½ΠΎΠ³ΠΎΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ, ΡΡΠΎ ΡΠΎΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΡΠ΄Π²ΠΈΠ³ΠΎΠ² Π² ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅, ΠΏΡΠΎΡΠ΅ΠΊΠ°Π½ΠΈΡ ΡΠ΅Π°Π»Π»ΠΎΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π½Π° ΡΡΠ½ΠΊΠ΅ ΡΡΡΠ΄Π°, ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΡΡΡ Π½Π° Π±Π»Π°Π³ΠΎΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ. ΠΡΡΠΎΠΊΠ° ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π°, Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° Π½Π° Π·Π°Π½ΡΡΠΎΡΡΡ. ΠΡΠ΅ ΡΡΠΎ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ Π²Π°ΠΆΠ½ΠΎΠΌ ΠΌΠ΅ΡΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π°, ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΏΡΠ΅Π΄Π»ΠΎΠ³ΠΎΠΌ Π΄Π»Ρ ΠΈΡ
ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ. ΠΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌ Π΄Π΅ΡΠΊΡΠΈΠΏΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π²ΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΠΎ ΡΡΠΎΠ²Π½Ρ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ° Π ΠΎΡΡΠΈΠΈ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ, Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΡΡΠ΄Π°. Π Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ Π°ΡΠΏΠ΅ΠΊΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΠΏΡΠΈΡΠΎΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° Π·Π° ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π² Π ΠΎΡΡΠΈΠΈ. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠΎΠ² ΡΠΎΡΡΠ° Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° Ρ ΠΏΡΠΈΡΠΎΡΡΠΎΠΌ ΠΏΡΡΠΌΡΡ
ΠΈΠ½ΠΎΡΡΡΠ°Π½Π½ΡΡ
ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΉ ΡΠΎΡΡ ΠΊΠ°ΠΏΠΈΡΠ°Π»Π° Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π½Π° ΡΠ΅Ρ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡΡ
, Π³Π΄Π΅ Π°ΠΊΡΠΈΠ²Π½ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΡ ΡΡΡΠ΄Π°. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π² Π΄ΠΎΠ»Π³ΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π°ΠΊΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡ
ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π°: ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ, Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ, ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΌΠΎΠΌΠ΅Π½ΡΡ Π½Π°Π±Π»ΡΠ΄Π°ΡΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΠ΅Π»ΠΎΠΌ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΠΈ, Π½ΠΎ ΠΈ Π² ΡΠΎΡΡΠ°Π²Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ, ΠΏΡΠΈΡΠΎΠΊΠ΅ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΉ Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡ, ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠΈΠ²ΡΠ΅ΠΉΡΡ ΡΠΈΡΡΠ°ΡΠΈΠΈ
On the developing of the mathematical model of all-wheel drive vehicle
The mathematical model of all-wheel-drive vehicle is proposed, which makes it possible to investigate the economic indicators of the vehicleβs movement for choosing the optimal type of central differential in a given range of road conditions
Labor profitability and labor productivity in Russia: the direction of capital
The research is devoted to the analysis and evaluation of labor profitability and labor productivity and their relationship to capital flows. The objective of the research is to define the relationship between labor profitability and investment in fixed assets at various levels. The subject is economic activities and regions of Russia. The study period covers the period from 2002 to 2013. A new method of calculating the index of labor profitability is trialed which places a particular emphasis on labor costs. An important place is occupied by the methods of descriptive statistics. The indicators are examined in two ways: static and dynamic. The authorβs approach is to distinguish between the indicators of profitability and productivity due to the specific features of particular elements of the indicators and their role in economic development. The author identifies the leading regions and outsiders by using the indices being studied and emerging relationships. There is a paradox from the industrial perspective: capital is attracted by high-performance sectors, whereas in regions investments follow high-yielding labour. The attention is focused on the differentiation of gaps in performance. The results of the study can be used by federal and regional authorities in order to raise capital for various territories. They may serve as an indicator of investment attractiveness of Russiaβs regions when designing long-term development programmes. The main conclusion is based on the grounds that the implementation of economic restructuring policies of import substitution must pay attention to the profitability of labor that can serve as a signal to potential investors. In this regards, an increase in capital flows is expected both from foreign and domestic investors.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΠ²ΡΡΠ΅Π½ΠΎ Π°Π½Π°Π»ΠΈΠ·Ρ ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ΄Π°, ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΉ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΊΠ°ΠΏΠΈΡΠ°Π». Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ - ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΡΡ ΡΡΡΠ΄Π° ΠΈ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΡΠΌΠΈ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΊΠ°ΠΏΠΈΡΠ°Π» Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠΎΠ²Π½ΡΡ
. ΠΠ±ΡΠ΅ΠΊΡΠΎΠΌ Π²ΡΡΡΡΠΏΠ°ΡΡ Π²ΠΈΠ΄Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠ΅Π³ΠΈΠΎΠ½Ρ Π ΠΎΡΡΠΈΠΈ. ΠΠ΅ΡΠΈΠΎΠ΄ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡ
Π²Π°ΡΡΠ²Π°Π΅Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Ρ 2002 ΠΏΠΎ 2013 Π³. ΠΡΠΎΠ±ΡΠ΅ΡΡΡ ΠΈΠ½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ ΡΡΡΠ΄Π°, Π³Π΄Π΅ ΠΎΡΠΎΠ±ΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ Π·Π°Π½ΠΈΠΌΠ°ΡΡ Π·Π°ΡΡΠ°ΡΡ Π½Π° ΡΡΡΠ΄. ΠΠ°ΠΆΠ½ΠΎΠ΅ ΠΌΠ΅ΡΡΠΎ Π·Π°Π½ΠΈΠΌΠ°ΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ Π² Π΄Π²ΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠ°Ρ
: Π² ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅. ΠΠ²ΡΠΎΡΡΠΊΠΈΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ ΡΠ°Π·Π³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ΄Π° Π² Π²ΠΈΠ΄Ρ ΠΎΡΠΎΠ±ΠΎΠΉ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠΎΠ² ΠΈ ΠΈΡ
ΡΠΎΠ»ΠΈ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ. ΠΡΡΠ²Π»ΡΡΡΡΡ ΡΠ΅Π³ΠΈΠΎΠ½Ρ-Π»ΠΈΠ΄Π΅ΡΡ ΠΈ ΡΠ΅Π³ΠΈΠΎΠ½Ρ-Π°ΡΡΡΠ°ΠΉΠ΄Π΅ΡΡ ΠΏΠΎ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌ ΠΈ ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠΌΡΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΡΠΌ. ΠΠ°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΠΏΠ°ΡΠ°Π΄ΠΎΠΊΡ Π² ΠΎΡΡΠ°ΡΠ»Π΅Π²ΠΎΠΌ ΡΠ°Π·ΡΠ΅Π·Π΅: ΠΊΠ°ΠΏΠΈΡΠ°Π» ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ°ΡΡ Π²ΡΡΠΎΠΊΠΎΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ΅ΠΊΡΠΎΡΠ°, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π² ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΌ Π°ΡΠΏΠ΅ΠΊΡΠ΅ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΈ ΡΠ»Π΅Π΄ΡΡΡ Π·Π° Π²ΡΡΠΎΠΊΠΎΠ΄ΠΎΡ
ΠΎΠ΄Π½ΡΠΌ ΡΡΡΠ΄ΠΎΠΌ. ΠΠΊΡΠ΅Π½ΡΠΈΡΡΠ΅ΡΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ ΡΠ°Π·ΡΡΠ²ΠΎΠ² Π² ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡ
. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π² ΡΠ°Π±ΠΎΡΠ΅ ΡΠ΅Π΄Π΅ΡΠ°Π»ΡΠ½ΡΡ
ΠΈ ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΎΡΠ³Π°Π½ΠΎΠ² Π²Π»Π°ΡΡΠΈ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ Π½Π° ΠΏΡΠΈΠ²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΏΠΈΡΠ°Π»Π°. ΠΠΎΠ³ΡΡ ΡΠ»ΡΠΆΠΈΡΡ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠΎΠΌ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π° Π΄ΠΎΠ»Π³ΠΎΡΡΠΎΡΠ½ΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π²ΡΠ²ΠΎΠ΄ ΡΡΡΠΎΠΈΡΡΡ Π½Π° ΡΠΎΠΌ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΈ ΡΠ΅ΡΡΡΡΠΊΡΡΡΠΈΠ·Π°ΡΠΈΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΈΠΌΠΏΠΎΡΡΠΎΠ·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΡ ΡΡΡΠ΄Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ ΡΠ»ΡΠΆΠΈΡΡ ΡΠΈΠ³Π½Π°Π»ΠΎΠΌ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ½Π²Π΅ΡΡΠΎΡΠ°ΠΌ. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΠΏΠΎΡΠΎΠΊΠΎΠ² ΠΊΠ°ΠΏΠΈΡΠ°Π»Π° Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΡΡΠ°ΡΡΡΠ° ΡΠ΅Π·ΠΈΠ΄Π΅Π½ΡΡΠ²Π° ΠΈΠ½Π²Π΅ΡΡΠΎΡΠ°
Self-organization of topological defects for a triangular-lattice magnetic dots array subject to a perpendicular magnetic field
The regular array of magnetic particles (magnetic dots) of the form of a
two-dimensional triangular lattice in the presence of external magnetic field
demonstrates complicated magnetic structures. The magnetic symmetry of the
ground state for such a system is lower than that for the underlying lattice.
Long range dipole-dipole interaction leads to a specific antiferromagnetic
order in small fields, whereas a set of linear topological defects appears with
the growth of the magnetic field. Self-organization of such defects determines
the magnetization process for a system within a wide range of external magnetic
fields.Comment: 10 pages, 4 figures. arXiv admin note: substantial text overlap with
arXiv:1201.174
Social and Personal Competence Assessment within Qualification Certification of Nuclear Industry University Graduates
AbstractThis article presents the results of research for the expert and methodical center of assessment and certification of qualifications of specialists in the nuclear industry established on the basis of the National Nuclear Innovation Consortium. A series of new professional standards for the nuclear industry has shown that the value of social and personal competence is increasing. The objectives of the study were to identify latent personality factors that have a significant impact on the performance of various types of management activities and to create a model for assessing the socio-personal competence of IT specialists and managers of the nuclear industry. To solve the problem of classification various methods of the cluster analysis were used. The study was performed in 2014 on students of NRNU MEPhI. Cluster analysis in the set of attributes taking into account both individual personality traits and achievements allowed forming five independent classes. For each of the five classes we derived a model of assessment of the level of development of social and personal competence
Transferable Adversarial Robustness for Categorical Data via Universal Robust Embeddings
Research on adversarial robustness is primarily focused on image and text
data. Yet, many scenarios in which lack of robustness can result in serious
risks, such as fraud detection, medical diagnosis, or recommender systems often
do not rely on images or text but instead on tabular data. Adversarial
robustness in tabular data poses two serious challenges. First, tabular
datasets often contain categorical features, and therefore cannot be tackled
directly with existing optimization procedures. Second, in the tabular domain,
algorithms that are not based on deep networks are widely used and offer great
performance, but algorithms to enhance robustness are tailored to neural
networks (e.g. adversarial training).
In this paper, we tackle both challenges. We present a method that allows us
to train adversarially robust deep networks for tabular data and to transfer
this robustness to other classifiers via universal robust embeddings tailored
to categorical data. These embeddings, created using a bilevel alternating
minimization framework, can be transferred to boosted trees or random forests
making them robust without the need for adversarial training while preserving
their high accuracy on tabular data. We show that our methods outperform
existing techniques within a practical threat model suitable for tabular data
- β¦