71 research outputs found

    Effect of dust grain porosity on the appearance of protoplanetary disks

    Full text link
    We theoretically analyze protoplanetary disks consisting of porous dust grains. In the analysis of observations of protoplanetary disks the dust phase is often assumed to consist of spherical grains, allowing one to apply the Mie scattering formalism. However, in reality, the shape of dust grains is expected to deviate strongly from that of a sphere. We investigate the influence of porous dust grains on the temperature distribution and observable appearance of protoplanetary disks for dust grain porosities of up to 60 %. We performed radiative transfer modeling to simulate the temperature distribution, spectral energy distribution, and spatially resolved intensity and polarization maps. The optical properties of porous grains were calculated using the method of discrete dipole approximation. We find that the flux in the optical wavelength range is for porous grains higher than for compact, spherical grains. The profile of the silicate peak at 9.7 um strongly depends on the degree of grain porosity. The temperature distribution shows significant changes in the direction perpendicular to the midplane. Moreover, simulated polarization maps reveal an increase of the polarization degree by a factor of about four when porous grains are considered, regardless of the disk inclination. The polarization direction is reversed in selected disk regions, depending on the wavelength, grain porosity, and disk inclination. We discuss several possible explanations of this effect and find that multiple scattering explains the effect best. Porosity influences the observable appearance of protoplanetary disks. In particular, the polarization reversal shows a dependence on grain porosity. The physical conditions within the disk are altered by porosity, which might have an effect on the processes of grain growth and disk evolution.Comment: 12 pages, 18 figure

    Self-scattering of non-spherical dust grains: The limitations of perfect compact spheres

    Get PDF
    Context. The understanding of (sub-)millimetre polarisation has made a leap forward since high-resolution imaging with the Atacama Large (sub-)Mm Array (ALMA) became available. Amongst other effects, self-scattering (i.e. the scattering of thermal dust emission on other grains) is thought to be the origin of millimetre polarisation. This opens the first window to a direct measurement of dust grain sizes in regions of optically thick continuum emission as it can be found in protoplanetary discs and star-forming regions. However, the newly derived values of grain sizes are usually around ~100 μm and thus one order of magnitude smaller than those obtained from more indirect measurements, as well as those expected from theory (~1 mm). / Aims. We see the origin of this contradiction in the applied dust model of current self-scattering simulations: a perfect compact sphere. The aim of this study is to test our hypothesis by investigating the impact of non-spherical grain shapes on the self-scattering signal. / Methods. We applied discrete dipole approximation simulations to investigate the influence of the grain shape on self-scattering polarisation in three scenarios: an unpolarised and polarised incoming wave under a fixed and a varying incident polarisation angle. / Results. We find significant deviations of the resulting self-scattering polarisation when comparing non-spherical to spherical grains. In particular, tremendous deviations are found for the polarisation signal of grains when observed outside the Rayleigh regime, that is for >100 μm sized grains observed at the 870 μm wavelength. Self-scattering by oblate grains produces higher polarisation degrees compared to spheres, which challenges the interpretation of the origin of observed millimetre polarisation. A (nearly) perfect alignment of the non-spherical grains is required to account for the observed millimetre polarisation in protoplanetary discs. Furthermore, we find conditions under which the emerging scattering polarisation of non-spherical grains is flipped in orientation by 90°. / Conclusions. These results show clearly that the perfect compact sphere is an oversimplified model, which has reached its limit. Our findings point towards a necessary re-evaluation of the dust grain sizes derived from (sub-)millimetre polarisation

    The circumstellar disc of FS Tau B – a self-consistent model based on observations in the mid-infrared with NACO

    Get PDF
    Protoplanetary discs are a byproduct of the star formation process. In the dense mid-plane of these discs, planetesimals and planets are expected to form. The first step in planet formation is the growth of dust particles from submicrometre-sized grains to macroscopic mm-sized aggregates. The grain growth is accompanied by radial drift and vertical segregation of the particles within the disc. To understand this essential evolutionary step, spatially resolved multi-wavelength observations as well as photometric data are necessary which reflect the properties of both disc and dust. We present the first spatially resolved image obtained with NACO at the VLT in the Lp band of the near edge-on protoplanetary disc FS Tau B. Based on this new image, a previously published Hubble image in H band and the spectral energy distribution from optical to millimetre wavelengths, we derive constraints on the spatial dust distribution and the progress of grain growth. For this purpose we perform a disc modelling using the radiative transfer code MC 3 3 D. Radial drift and vertical sedimentation of the dust are not considered. We find a best-fitting model which features a disc extending from 2 au to several hundreds au with a moderately decreasing surface density and Mdisc = 2.8 × 10−2 M⊙. The inclination amounts to i = 80°. Our findings indicate that substantial dust grain growth has taken place and that grains of a size equal to or larger than 1 mm are present in the disc. In conclusion, the parameters describing the vertical density distribution are better constrained than those describing the radial disc structure

    Collisions and drag in debris discs with eccentric parent belts

    Get PDF
    Context: High-resolution images of circumstellar debris discs reveal off-centred rings that indicate past or ongoing perturbation, possibly caused by secular gravitational interaction with unseen stellar or substellar companions. The purely dynamical aspects of this departure from radial symmetry are well understood. However, the observed dust is subject to additional forces and effects, most notably collisions and drag. Aims: To complement the studies of dynamics, we therefore aim to understand how new asymmetries are created by the addition of collisional evolution and drag forces, and existing ones strengthened or overridden. Methods: We augmented our existing numerical code "Analysis of Collisional Evolution" (ACE) by an azimuthal dimension, the longitude of periapse. A set of fiducial discs with global eccentricities ranging from 0 to 0.4 is evolved over giga-year timescales. Size distribution and spatial variation of dust are analysed and interpreted. The basic impact of belt eccentricity on spectral energy distributions (SEDs) and images is discussed. Results: We find features imposed on characteristic timescales. First, radiation pressure defines size cutoffs that differ between periapse and apoapse, resulting in an asymmetric halo. The differences in size distribution make the observable asymmetry of the halo depend on wavelength. Second, collisional equilibrium prefers smaller grains on the apastron side of the parent belt, reducing the effect of pericentre glow and the overall asymmetry. Third, Poynting-Robertson drag fills the region interior to an eccentric belt such that the apastron side is more tenuous. Interpretation and prediction of the appearance in scattered light is problematic when spatial and size distribution are coupled.Comment: Accepted for publication in A&A, 14 pages, 16 figure

    Supernova induced processing of interstellar dust: impact of ISM gas density and gas turbulence

    Get PDF
    Quantifying the efficiency of dust destruction in the interstellar medium (ISM) due to supernovae (SNe) is crucial for the understanding of galactic dust evolution. We present 3D hydrodynamic simulations of an SN blast wave propagating through the ISM. The interaction between the forward shock of the remnant and the surrounding ISM leads to destruction of ISM dust by the shock-heated gas. We consider the dust processing due to ion sputtering, accretion of atoms/molecules, and grain–grain collisions. Using 2D slices from the simulation time series, we apply post-processing calculations using the paperboats code. We find that efficiency of dust destruction depends strongly on the rate of grain shattering due to grain–grain collisions. The effective dust destruction is similar to previous theoretical estimates when grain–grain collisions are omitted, but with grain shattering included, the net destruction efficiency is roughly one order of magnitude higher. This result indicates that the dust-destruction rate in the ISM may have been severely underestimated in previous work, which only exacerbates the dust-budget crises seen in galaxies at high redshifts

    Silicate Grain Growth due to Ion Trapping in Oxygen-rich Supernova Remnants like Cassiopeia A

    Get PDF
    Core-collapse supernovae can condense large masses of dust post-explosion. However, sputtering and grain–grain collisions during the subsequent passage of the dust through the reverse shock can potentially destroy a significant fraction of the newly formed dust before it can reach the interstellar medium. Here we show that in oxygen-rich supernova remnants like Cassiopeia A, the penetration and trapping within silicate grains of the same impinging ions of oxygen, silicon, and magnesium that are responsible for grain surface sputtering can significantly reduce the net loss of grain material. We model conditions representative of dusty clumps (density contrast of χ = 100) passing through the reverse shock in the oxygen-rich Cassiopeia A remnant and find that, compared to cases where the effect is neglected as well as facilitating the formation of grains larger than those that had originally condensed, ion trapping increases the surviving masses of silicate dust by factors of up to two to four, depending on initial grain radii. For higher density contrasts (χ gsim 180), we find that the effect of gas accretion on the surface of dust grains surpasses ion trapping, and the survival rate increases to ~55% of the initial dust mass for χ = 256

    The influence of dust grain porosity on the analysis of debris disc observations

    Get PDF
    Debris discs are often modelled assuming compact dust grains, but more and more evidence for the presence of porous grains is found. We aim at quantifying the systematic errors introduced when modelling debris discs composed of porous dust with a disc model assuming spherical, compact grains. We calculate the optical dust properties derived via the fast, but simple effective medium theory. The theoretical lower boundary of the size distribution – the so-called ‘blowout size’ – is compared in the cases of compact and porous grains. Finally, we simulate observations of hypothetical debris discs with different porosities and feed them into a fitting procedure using only compact grains. The deviations of the results for compact grains from the original model based on porous grains are analysed. We find that the blowout size increases with increasing grain porosity up to a factor of 2. An analytical approximation function for the blowout size as a function of porosity and stellar luminosity is derived. The analysis of the geometrical disc set-up, when constrained by radial profiles, is barely affected by the porosity. However, the determined minimum grain size and the slope of the grain size distribution derived using compact grains are significantly overestimated. Thus, the unexpectedly high ratio of minimum grain size to blowout size found by previous studies using compact grains can be partially described by dust grain porosity, although the effect is not strong enough to completely explain the trend

    HD 169142 in the eyes of ZIMPOL/SPHERE

    Get PDF
    We present new data of the protoplanetary disc surrounding the Herbig Ae/Be star HD 169142 obtained in the very broad-band (VBB) with the Zurich imaging polarimeter (ZIMPOL), a sub-system of the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) at the Very Large Telescope (VLT). Our Polarimetric Differential Imaging (PDI) observations probe the disc as close as 0.03" (3.5au) to the star and are able to trace the disc out to ~1.08" (~126au). We find an inner hole, a bright ring bearing substructures around 0.18" (21au), and an elliptically shaped gap stretching from 0.25" to 0.47" (29-55au). Outside of 0.47", the surface brightness drops off, discontinued only by a narrow annular brightness minimum at ~0.63"-0.74" (74-87au). These observations confirm features found in less-well resolved data as well as reveal yet undetected indications for planet-disc interactions, such as small-scale structures, star-disk offsets, and potentially moving shadows.Comment: Accepted for publication in MNRA

    Constraints on the structure of hot exozodiacal dust belts

    Get PDF
    Recent interferometric surveys of nearby main-sequence stars show a faint but significant near-infrared excess in roughly two dozen systems, i.e. around 10–30 per cent of stars surveyed. This excess is attributed to dust located in the immediate vicinity of the star, the origin of which is highly debated. We used previously published interferometric observations to constrain the properties and distribution of this hot dust. Considering both scattered radiation and thermal re-emission, we modelled the observed excess in nine of these systems. We find that grains have to be sufficiently absorbing to be consistent with the observed excess, while dielectric grains with pure silicate compositions fail to reproduce the observations. The dust should be located within ∼0.01–1 au from the star depending on its luminosity. Furthermore, we find a significant trend for the disc radius to increase with the stellar luminosity. The dust grains are determined to be below 0.2--0.5μm, but above 0.02--0.15μm in radius. The dust masses amount to (0.2–3.5) × 10⁻⁹ M⊕. The near-infrared excess is probably dominated by thermal re-emission, though a contribution of scattered light up to 35  per cent cannot be completely excluded. The polarization degree predicted by our models is always below 5  per cent, and for grains smaller than ∼0.2μm even below 1  per cent. We also modelled the observed near-infrared excess of another 10 systems with poorer data in the mid-infrared. The basic results for these systems appear qualitatively similar, yet the constraints on the dust location and the grain sizes are weaker

    First L band detection of hot exozodiacal dust with VLTI/MATISSE

    Get PDF
    For the first time, we observed the emission of hot exozodiacal dust in L band. We used the new instrument MATISSE at the Very Large Telescope Interferometer to detect the hot dust around κ Tuc with a significance of 3σ to 6σ at wavelengths between 3.37 and 3.85μm and a dust-to-star flux ratio of 5 to 7 per cent⁠. We modelled the spectral energy distribution based on the new L band data alone and in combination with H band data published previously. In all cases we find 0.58μm grains of amorphous carbon to fit the κ Tuc observations the best, however, also nanometre or micrometre grains and other carbons or silicates reproduce the observations well. Since the H band data revealed a temporal variability, while our Lband data were taken at a different epoch, we combine them in different ways. Depending on the approach, the best fits are obtained for a narrow dust ring at a stellar distance in the 0.1–029 au range and thus with a temperature between 940 and 1430K⁠. Within the 1σ uncertainty dust location and temperature are confined to 0.032−1.18au and 600−2000K⁠
    corecore