48 research outputs found

    On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility

    Get PDF
    Lamellipodia are flat membrane protrusions formed during mesenchymal motion. Polymerization at the leading edge assembles the actin filament network and generates protrusion force. How this force is supported by the network and how the assembly rate is shared between protrusion and network retrograde flow determines the protrusion rate. We use mathematical modeling to understand experiments changing the F-actin density in lamellipodia of B16-F1 melanoma cells by modulation of Arp2/3 complex activity or knockout of the formins FMNL2 and FMNL3. Cells respond to a reduction of density with a decrease of protrusion velocity, an increase in the ratio of force to filament number, but constant network assembly rate. The relation between protrusion force and tension gradient in the F-actin network and the density dependency of friction, elasticity, and viscosity of the network explain the experimental observations. The formins act as filament nucleators and elongators with differential rates. Modulation of their activity suggests an effect on network assembly rate. Contrary to these expectations, the effect of changes in elongator composition is much weaker than the consequences of the density change. We conclude that the force acting on the leading edge membrane is the force required to drive F-actin network retrograde flow

    Disease- and sex-specific differences in patients with heart valve disease: a proteome study

    Get PDF
    Pressure overload in patients with aortic valve stenosis and volume overload in mitral valve regurgitation trigger specific forms of cardiac remodeling; however, little is known about similarities and differences in myocardial proteome regulation. We performed proteome profiling of 75 human left ventricular myocardial biopsies (aortic stenosis = 41, mitral regurgitation = 17, and controls = 17) using high-resolution tandem mass spectrometry next to clinical and hemodynamic parameter acquisition. In patients of both disease groups, proteins related to ECM and cytoskeleton were more abundant, whereas those related to energy metabolism and proteostasis were less abundant compared with controls. In addition, disease group-specific and sex-specific differences have been observed. Male patients with aortic stenosis showed more proteins related to fibrosis and less to energy metabolism, whereas female patients showed strong reduction in proteostasis-related proteins. Clinical imaging was in line with proteomic findings, showing elevation of fibrosis in both patient groups and sex differences. Disease- and sex-specific proteomic profiles provide insight into cardiac remodeling in patients with heart valve disease and might help improve the understanding of molecular mechanisms and the development of individualized treatment strategies

    A proteomics analysis of 5xFAD mouse brain regions reveals the lysosome-associated protein Arl8b as a candidate biomarker for Alzheimer's disease

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-β (Aβ) peptides. How Aβ aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aβ aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS: We quantified progressive Aβ aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS: Experiments revealed faster accumulation of Aβ42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aβ42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aβ aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aβ42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aβ plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS: We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker

    Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN

    Get PDF
    Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis

    High serum prevalence of autoreactive IgG antibodies against peripheral nerve structures in patients with neurological post-COVID-19 vaccination syndrome

    Get PDF
    BackgroundPatients suffering from neurological symptoms after COVID-19 vaccination (post-COVID-19 vaccination syndrome (PCVS)) have imposed an increasing challenge on medical practice, as diagnostic precision and therapeutic options are lacking. Underlying autoimmune dysfunctions, including autoantibodies, have been discussed in neurological disorders after SARS-CoV-2 infection and vaccination. Here, we describe the frequency and targets of autoantibodies against peripheral nervous system tissues in PCVS.MethodsSera from 50 PCVS patients with peripheral neurological symptoms after COVID-19 vaccination and 35 vaccinated healthy controls were used in this study. IgG autoreactivity was measured via indirect immunofluorescence assays on mouse sciatic nerve teased fibers. The frequencies of autoantibodies were compared between groups using Fisher’s exact test. Serum anti-ganglioside antibodies were measured in ganglioside blots. Autoantibody target identification was performed using immunoprecipitation coupled to mass spectrometry. Subsequent target confirmation was conducted via cell-based assays and ELISA.ResultsCompared with controls, PCVS patients had a significantly greater frequency of autoantibodies against peripheral nervous system structures (9/50(18%) vs 1/35(3%); p=0.04). Autoantibodies bound to paranodes (n=5), axons (n=4), Schmidt-Lanterman incisures (n=2) and Schwann cell nuclei (n=1). Conversely, antibodies against gangliosides were absent in PCVS patients. Target identification and subsequent confirmation revealed various subunits of neurofilaments as well as DFS-70 as autoantibody epitopes.ConclusionOur data suggest that autoantibodies against nervous system tissue could be relevant in PCVS patients. Autoantibodies against neurofilaments and cell nuclei with so far non-established links to this disease spectrum should be further elucidated to determine their biomarker potential

    Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection

    Get PDF
    The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies

    In Vivo Conditions to Identify Prkci Phosphorylation Targets Using the Analog-Sensitive Kinase Method in Zebrafish

    Get PDF
    Protein kinase C iota is required for various cell biological processes including epithelial tissue polarity and organ morphogenesis. To gain mechanistic insight into different roles of this kinase, it is essential to identify specific substrate proteins in their cellular context. The analog-sensitive kinase method provides a powerful tool for the identification of kinase substrates under in vivo conditions. However, it has remained a major challenge to establish screens based on this method in multicellular model organisms. Here, we report the methodology for in vivo conditions using the analog-sensitive kinase method in a genetically-tractable vertebrate model organism, the zebrafish. With this approach, kinase substrates can uniquely be labeled in the developing zebrafish embryo using bulky ATPγS analogs which results in the thiophosphorylation of substrates. The labeling of kinase substrates with a thiophosphoester epitope differs from phosphoesters that are generated by all other kinases and allows for an enrichment of thiophosphopeptides by immunoaffinity purification. This study provides the foundation for using the analog-sensitive kinase method in the context of complex vertebrate development, physiology, or disease

    CD46-Independent Binding of Neisserial Type IV Pili and the Major Pilus Adhesin, PilC, to Human Epithelial Cells

    No full text
    Neisseria gonorrhoeae is a gram-negative bacterial pathogen which infects the human mucosal epithelium. An early critical event in neisserial infection is the type IV pilus-mediated adherence to the host cell. The PilC protein, located on the pilus tip, has earlier been identified as the major pilus adhesin. Previous studies suggested that the cell surface protein CD46 is a pilus receptor for Neisseria. We investigated the role of CD46 in pilus-mediated gonococcal infection of epithelial cells. Differences in binding efficiencies of piliated gonococci as well as purified pilus adhesin PilC2 on human epithelial cell lines did not correlate to the level of surface-expressed CD46. Additionally, no binding of piliated gonococci or PilC2 protein was observed on CD46-transfected CHO and MDCK cells. Furthermore, specific down-regulation of CD46 expression in human epithelial cell lines by RNA interference did not alter the binding efficiency of piliated gonococci or purified PilC2 protein, although other CD46-dependent processes, such as measles virus infection and C3b cleavage, were significantly reduced. These data support the notion that pilus-mediated gonococcal infection of epithelial cells can occur in a CD46-independent manner, thus questioning the function of CD46 as an essential pilus receptor for pathogenic neisseriae
    corecore