456 research outputs found

    Experimental quantum information processing with 43Ca+ ions

    Full text link
    For quantum information processing (QIP) with trapped ions, the isotope 43Ca+ offers the combined advantages of a quantum memory with long coherence time, a high fidelity read out and the possibility of performing two qubit gates on a quadrupole transition with a narrow-band laser. Compared to other ions used for quantum computing, 43Ca+ has a relatively complicated level structure. In this paper we discuss how to meet the basic requirements for QIP and demonstrate ground state cooling, robust state initialization and efficient read out for the hyperfine qubit with a single 43Ca+ ion. A microwave field and a Raman light field are used to drive qubit transitions, and the coherence times for both fields are compared. Phase errors due to interferometric instabilities in the Raman field generation do not limit the experiments on a time scale of 100 ms. We find a quantum information storage time of many seconds for the hyperfine qubit.Comment: 9 pages, 10 figure

    Quantum simulation and optimization in hot quantum networks

    No full text

    Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+

    Get PDF
    The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in 43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+ ion. We determine the hyperfine structure constants of the metastable level as A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the existence of transitions that become independent of the first-order Zeeman shift at non-zero low magnetic fields. These transitions might be better suited for building a frequency standard than the well-known 'clock transitions' between m=0 levels at zero magnetic field.Comment: corrected for sign errors in the hyperfine constants. No corrections to were made to the data analysi

    Characterization of low loss microstrip resonators as a building block for circuit QED in a 3D waveguide

    Full text link
    Here we present the microwave characterization of microstrip resonators made from aluminum and niobium inside a 3D microwave waveguide. In the low temperature, low power limit internal quality factors of up to one million were reached. We found a good agreement to models predicting conductive losses and losses to two level systems for increasing temperature. The setup presented here is appealing for testing materials and structures, as it is free of wire bonds and offers a well controlled microwave environment. In combination with transmon qubits, these resonators serve as a building block for a novel circuit QED architecture inside a rectangular waveguide

    Quantum communication between trapped ions through a dissipative environment

    Full text link
    We study two trapped ions coupled to the axial phonon modes of a one-dimensional Coulomb crystal. This system is formally equivalent to the "two spin-boson" model. We propose a scheme to dynamically generate a maximally entangled state of two ions within a decoherence-free subspace. Here the phononic environment of the trapped ions, whatever its temperature and number of modes, serves as the entangling bus. The efficient production of the pure singlet state can be exploited to perform short-ranged quantum communication which is essential in building up a large-scale quantum computer.Comment: 4 pages, 2 figure

    Entangled states of trapped ions allow measuring the magnetic field gradient of a single atomic spin

    Full text link
    Using trapped ions in an entangled state we propose detecting a magnetic dipole of a single atom at distance of a few μ\mum. This requires a measurement of the magnetic field gradient at a level of about 1013^{-13} Tesla/μ\mum. We discuss applications e.g. in determining a wide variation of ionic magnetic moments, for investigating the magnetic substructure of ions with a level structure not accessible for optical cooling and detection,and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measureing spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques well established in ion trap quantum information processing it is within reach of current technology.Comment: 4 pages, 2 fi

    Entanglement at the quantum phase transition in a harmonic lattice

    Full text link
    The entanglement properties of the phase transition in a two dimensional harmonic lattice, similar to the one observed in recent ion trap experiments, are discussed both, for finite number of particles and thermodynamical limit. We show that for the ground state at the critical value of the trapping potential two entanglement measures, the negativity between two neighbouring sites and the block entropy for blocks of size 1, 2 and 3, change abruptly. Entanglement thus indicates quantum phase transitions in general; not only in the finite dimensional case considered in [Phys. Rev. Lett. {\bf 93}, 250404 (2004)]. Finally, we consider the thermal state and compare its exact entanglement with a temperature entanglement witness introduced in [Phys. Rev. A {\bf 77} 062102 (2008)].Comment: extended published versio

    First record of a plasmodiophorid parasite in grapevine

    Get PDF
    In the context of an interdisciplinary project on grape pests and pathogens in Rheingau (Germany), the fine root system of grafted rootstocks has been screened for pathogenic fungi associated with root galls induced by grape phylloxera (Daktulosphaira vitifoliae (Fitch)). In several insect-induced galls, masses of resting spores of a plasmodiophorid could be seen. An additional selective screening revealed the occurrence of the plasmodiophorid parasite also in samples of gall-free rootlets: cortical cells of small necrotic areas were crowded with resting spores or other developmental stages of its life cycle. According to current taxonomic concepts, this plasmodiophorid could be identified as a member of the genus Sorosphaera Schroeter, resembling S. veronicae Schroeter. This is the first record of a plasmodiophorid parasite in grapevine
    corecore