9 research outputs found

    Lithium‐ion mobility in Li6B18(Li3N) and Li vacancy tuning in the solid solution Li6B18(Li3N)1−x(Li2O)x

    Get PDF
    All-solid-state batteries are promising candidates for safe energy-storage systems due to non-flammable solid electrolytes and the possibility to use metallic lithium as an anode. Thus, there is a challenge to design new solid electrolytes and to understand the principles of ion conduction on an atomic scale. We report on a new concept for compounds with high lithium ion mobility based on a rigid open-framework boron structure. The host–guest structure Li6B18(Li3N) comprises large hexagonal pores filled with urn:x-wiley:14337851:media:anie202213962:anie202213962-math-0001 Li7N] strands that represent a perfect cutout from the structure of α-Li3N. Variable-temperature 7Li NMR spectroscopy reveals a very high Li mobility in the template phase with a remarkably low activation energy below 19 kJ mol−1 and thus much lower than pristine Li3N. The formation of the solid solution of Li6B18(Li3N) and Li6B18(Li2O) over the complete compositional range allows the tuning of lithium defects in the template structure that is not possible for pristine Li3N and Li2O

    A Biosensor for the Detection of Acetylcholine and Diazinon

    No full text
    Acetylcholine is a neurotransmitter and a neuromodulator found in the autonomic, peripheral and central nervous systems. Diazinon is a pesticide with toxic effects on humans, such as the inhibition of acetylcholine. In this paper, a biosensor is proposed for the detection of acetylcholine (range 70 -1000 ΌΜ) and diazinon (range 0.3 -20000 ppb). This biosensor combines a pH-sensitive layer of reduced graphene oxide functionalized with 4-aminobenzoic acid and acetylcholinesterase. This enzyme was immobilized on reduced graphene oxide and it catalyzed the conversion of acetylcholine into choline and acetic acid, locally decreasing the pH value and triggering the sensor response. The limit of detection for the acetylcholine and diazinon were 70 ΌΜ and 0.3 ppb, respectively

    Fast lithium ion conduction in lithium phosphidoaluminates

    No full text
    Solid electrolyte materials are crucial for the development of high‐energy‐density all‐solid‐state batteries (ASSB) using a nonflammable electrolyte. In order to retain a low lithium‐ion transfer resistance, fast lithium ion conducting solid electrolytes are required. We report on the novel superionic conductor Li9AlP4 which is easily synthesised from the elements via ball‐milling and subsequent annealing at moderate temperatures and which is characterized by single‐crystal and powder X‐ray diffraction. This representative of the novel compound class of lithium phosphidoaluminates has, as an undoped material, a remarkable fast ionic conductivity of 3 mS cm−1 and a low activation energy of 29 kJ mol−1 as determined by impedance spectroscopy. Temperature‐dependent 7Li NMR spectroscopy supports the fast lithium motion. In addition, Li9AlP4 combines a very high lithium content with a very low theoretical density of 1.703 g cm−3. The distribution of the Li atoms over the diverse crystallographic positions between the [AlP4]9− tetrahedra is analyzed by means of DFT calculations

    Graphene-based devices for measuring pH

    No full text
    pH measuring and monitoring is fundamental to understand or control many chemical processes in biological, industrial or environmental fields. Potentiometric measurements by a glass electrode is the most common method to measure pH, although single-use paper strips are also widely used. Other methods include the use of hydrogen, quinhydron, and antimony electrodes, the imaging using pH-sensitive indicators such as dyes or proteins, and the use of ion-selective field effect transistor (ISFET). Due to the chemical reactivity of both sides of its 2D structure, nanometer thickness, high electron mobility, high reactivity to oxygen groups such as OH-, and ultrafast optical response, graphene has the potential to be used for the fabrication of nanoscale, wide-range, high-sensitivity and flexible pH sensors. This review describes how graphene, graphene oxide and reduced graphene oxide can be used to fabricate pH-sensitive devices (e.g. solution-gated FETs, solid-gate FETs, electrochemical sensors, and pH-sensitive quantum dots). The various configurations are reported along with the advantages and current limitations

    A temperature-sensitive RFID tag for the identification of cold chain failures

    No full text
    Quality and safety of the cold chain undergo strict international regulations that identify storage and shipping temperatures. In fact, the improper handling and transportation of temperature-sensitive products such as food and pharmaceuticals may have harmful effects on human health and a negative economic impact. A passive RFID tag modified with a copper-doped ionic liquid was used to detect the crossing of a temperature threshold (8 °C) during the shipping of medical products. The tag was insensitive to humidity variations and irreversibly changed its status once temperature exceeded the ionic liquid melting point, which can be tuned by changing the concentration of dopant

    Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li<inf>14</inf>SiP<inf>6</inf>

    No full text
    Solid electrolytes with superionic conductivity are required as a main component for all-solid-state batteries. Here we present a novel solid electrolyte with three-dimensional conducting pathways based on "lithium-rich" phosphidosilicates with ionic conductivity of σ > 10-3 S cm-1 at room temperature and activation energy of 30-32 kJ mol-1 expanding the recently introduced family of lithium phosphidotetrelates. Aiming toward higher lithium ion conductivities, systematic investigations of lithium phosphidosilicates gave access to the so far lithium-richest compound within this class of materials. The crystalline material (space group Fm3m), which shows reversible thermal phase transitions, can be readily obtained by ball mill synthesis from the elements followed by moderate thermal treatment of the mixture. Lithium diffusion pathways via both tetrahedral and octahedral voids are analyzed by temperature-dependent powder neutron diffraction measurements in combination with maximum entropy method and DFT calculations. Moreover, the lithium ion mobility structurally indicated by a disordered Li/Si occupancy in the tetrahedral voids plus partially filled octahedral voids is studied by temperature-dependent impedance and 7Li NMR spectroscopy

    Quellen- und Literaturverzeichnis

    No full text
    corecore