262 research outputs found

    Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    No full text
    International audienceAn error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50?100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf). This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS ? Sun Monitor and Atmospheric Sounder) and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD) with 0.03% and silicon diodes (SD) with 0.1% (unattenuated intensity) measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50?100 km) we find temperature to be retrieved to better than 0.3 K (DD) / 1 K (SD) accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with unprecedented accuracy and vertical resolution. A major part of the error analysis also applies to refractive (e.g., Global Navigation Satellite System based) occultations as well as to any temperature profile retrieval based on air density or major species density measurements (e.g., from Rayleigh lidar or falling sphere techniques)

    Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    Get PDF
    International audienceThis study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2?0.5 K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10 K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10?35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of "unbiasedness and long-term stability due to intrinsic self-calibration" can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the upper boundary down to below 25 km. Also above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialised observed RO bending angles (free of a priori) is thus the method of choice. The results underline the value of RO for climate applications

    Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses

    Get PDF
    This study describes and evaluates a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval scheme particularly aimed at delivering bias-free atmospheric parameters for climate monitoring and research. The focus of the retrieval is on the sensible use of a priori information for careful high-altitude initialisation in order to maximise the usable altitude range. The RO retrieval scheme has been meanwhile applied to more than five years of data (September 2001 to present) from the German CHAllenging Minisatellite Payload for geoscientific research (CHAMP) satellite. In this study it was validated against various correlative datasets including the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Global Ozone Monitoring for Occultation of Stars (GOMOS) sensors on Envisat, five different atmospheric analyses, and the operational CHAMP retrieval product from GeoForschungsZentrum (GFZ) Potsdam. In the global mean within 10 to 30 km altitude we find that the present validation observationally constrains the potential RO temperature bias to be <0.2 K. Latitudinally resolved analyses show biases to be observationally constrained to <0.2–0.5K up to 35 km in most cases, and up to 30 km in any case, even if severely biased (about 10K or more) a priori information is used in the high altitude initialisation of the retrieval. No evidence is found for the 10–35 km altitude range of residual RO bias sources other than those potentially propagated downward from initialisation, indicating that the widely quoted RO promise of “unbiasedness and long-term stability due to intrinsic self-calibration” can indeed be realised given care in the data processing to strictly limit structural uncertainty. The results thus reinforce that adequate high-altitude initialisation is crucial for accurate stratospheric RO retrievals. The common method of initialising, at some altitude in the upper stratosphere, the hydrostatic integral with an upper boundary temperature or pressure value derived from meteorological analyses is prone to introduce biases from the upper boundary down to below 25 km. Also above 30 to 35 km, GNSS RO delivers a considerable amount of observed information up to around 40 km, which is particularly interesting for numerical weather prediction (NWP) systems, where direct assimilation of non-initialised observed RO bending angles (free of a priori) is thus the method of choice. The results underline the value of RO for climate applications

    The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications

    Get PDF
    The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. FY-3C GNOS, on board the FY-3 series C satellite launched in September 2013, was designed to acquire setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou Navigation Satellite System (BDS) and the US Global Positioning System (GPS). So far, the GNOS measurements and atmospheric and ionospheric data products have been validated and evaluated and then been used for atmosphere- and ionosphere-related scientific applications.This paper reviews the FY-3C GNOS instrument, RO data processing, data quality evaluation, and preliminary research applications according to the state-of-the-art status of the FY-3C GNOS mission and related publications. The reviewed data validation and application results demonstrate that the FY-3C GNOS mission can provide accurate and precise atmospheric and ionospheric GNSS (i.e., GPS and BDS) RO profiles for numerical weather prediction (NWP), global climate monitoring (GCM), and space weather research (SWR). The performance of the FY-3C GNOS product quality evaluation and scientific applications establishes confidence that the GNOS data from the series of FY-3 satellites will provide important contributions to NWP, GCM, and SWR scientific communities.</p

    Nationaler Energie- und Klimaplan (NEKP) fĂĽr Ă–sterreich - Wissenschaftliche Bewertung der in der Konsultation 2023 vorgeschlagenen MaĂźnahmen [National Energy and Climate Plan (NEKP) for Austria - Scientific assessment of the measures proposed in the 2023 consultation]

    Get PDF
    Um den globalen Klimawandel zu bremsen, seine Auswirkungen abzumildern und eine nach-haltige Zukunft für junge und zukünftige Generationen zu gestalten, sind internationale Koor-dination sowie umfassende nationale Umsetzungspläne für Klimamaßnahmen unerlässlich. Vor diesem Hintergrund hat das Bundesministerium für Klimaschutz, Umwelt, Energie, Mobi-lität, Innovation und Technologie (BMK) nach Einbindung der relevanten anderen österreichi-schen Bundesministerien Ende Juni 2023 den Entwurf eines integrierten nationalen Energie- und Klimaplans (NEKP) für Österreich (Periode 2021-2030) vorgelegt. Dieser Entwurf stand im Sommer 2023 zur Kommentierung offen, um eine breite Beteiligung von öffentlichen und privaten Institutionen und Personen sicherzustellen. In order to slow down global climate change, mitigate its effects and shape a sustainable future for young and future generations, international coordination and comprehensive national implementation plans for climate measures are essential. Against this background, the Federal Ministry for Climate Protection, Environment, Energy, Mobility, Innovation and Technology (BMK), after involving the relevant other Austrian federal ministries, presented the draft of an integrated national energy and climate plan (NEKP) for Austria at the end of June 2023 ( Period 2021-2030). This draft was open for comment in summer 2023 to ensure broad participation from public and private institutions and individuals

    A curvilinear effect of height on reproductive success in human males

    Get PDF
    Human male height is associated with mate choice and intra-sexual competition, and therefore potentially with reproductive success. A literature review (n = 18) on the relationship between male height and reproductive success revealed a variety of relationships ranging from negative to curvilinear to positive. Some of the variation in results may stem from methodological issues, such as low power, including men in the sample who have not yet ended their reproductive career, or not controlling for important potential confounders (e.g. education and income). We investigated the associations between height, education, income and the number of surviving children in a large longitudinal sample of men (n = 3,578; Wisconsin Longitudinal Study), who likely had ended their reproductive careers (e.g. > 64 years). There was a curvilinear association between height and number of children, with men of average height attaining the highest reproductive success. This curvilinear relationship remained after controlling for education and income, which were associated with both reproductive success and height. Average height men also married at a younger age than shorter and taller men, and the effect of height diminished after controlling for this association. Thus, average height men partly achieved higher reproductive success by marrying at a younger age. On the basis of our literature review and our data, we conclude that men of average height most likely have higher reproductive success than either short or tall men

    Polish 2010 growth references for school-aged children and adolescents

    Get PDF
    Growth references are useful in monitoring a child's growth, which is an essential part of child care. The aim of this paper was to provide updated growth references for Polish school-aged children and adolescents and show the prevalence of overweight and obesity among them. Growth references for height, weight, and body mass index (BMI) were constructed with the lambda, mu, sigma (LMS) method using data from a recent, large, population-representative sample of school-aged children and adolescents in Poland (n = 17,573). The prevalence of overweight and obesity according to the International Obesity Taskforce definition was determined with the use of LMSGrowth software. Updated growth references for Polish school-aged children and adolescents were compared with Polish growth references from the 1980s, the Warsaw 1996–1999 reference, German, and 2000 CDC references. A positive secular trend in height was observed in children and adolescents from 7 to 15 years of age. A significant shift of the upper tail of the BMI distribution occurred, especially in Polish boys at younger ages. The prevalence of overweight or obesity was 18.7% and 14.1% in school-aged boys and girls, respectively. The presented height, weight, and BMI references are based on a current, nationally representative sample of Polish children and adolescents without known disorders affecting growth. Changes in the body size of children and adolescents over the last three decades suggest an influence of the changing economical situation on anthropometric indices
    • …
    corecore