3 research outputs found

    Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics

    Get PDF
    The panoply of microorganisms and other species present in our environment influence human health and disease, especially in cities, but have not been profiled with metagenomics at a city-wide scale. We sequenced DNA from surfaces across the entire New York City (NYC) subway system, the Gowanus Canal, and public parks. Nearly half of the DNA (48%) does not match any known organism; identified organisms spanned 1,688 bacterial, viral, archaeal, and eukaryotic taxa, which were enriched for harmless genera associated with skin (e.g., Acinetobacter). Predicted ancestry of human DNA left on subway surfaces can recapitulate U.S. Census demographic data, and bacterial signatures can reveal a station’s history, such as marine-associated bacteria in a hurricane-flooded station. Some evidence of pathogens was found (Bacillus anthracis), but a lack of reported cases in NYC suggests that the pathogens represent a normal, urban microbiome. This baseline metagenomic map of NYC could help long-term disease surveillance, bioterrorism threat mitigation, and health management in the built environment of citie

    Machine learning links T cell function and spatial localization to neoadjuvant immunotherapy and clinical outcome in pancreatic cancer

    No full text
    <p>Data supporting the findings of "Machine learning links T cell function and spatial localization to neoadjuvant immunotherapy and clinical outcome in pancreatic cancer" manuscript. Files include patient/region metadata (in metadata folder) and output of multiplex immunohistochemistry computational image processing workflow for each tissue region (in mIHC_files folder). The code used to produce the results of this study is available at: <a href="https://github.com/kblise/PDAC_mIHC_paper">https://github.com/kblise/PDAC_mIHC_paper</a>.</p&gt

    MYC Deregulation and PTEN Loss Model Tumor and Stromal Heterogeneity of Aggressive Triple-Negative Breast Cancer

    No full text
    Abstract Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response
    corecore