52 research outputs found

    Baryons in O(4) and Vibron Model

    Get PDF
    The structure of the reported excitation spectra of the light unflavored baryons is described in terms of multi-spin valued Lorentz group representations of the so called Rarita-Schwinger (RS) type (K/2, K/2)* [(1/ 2,0)+ (0,1/2)] with K=1,3, and 5. We first motivate legitimacy of such pattern as fundamental fields as they emerge in the decomposition of triple fermion constructs into Lorentz representations. We then study the baryon realization of RS fields as composite systems by means of the quark version of the U(4) symmetric diatomic rovibron model. In using the U(4)/ O(4)/ O(3)/ O(2) reduction chain, we are able to reproduce quantum numbers and mass splittings of the above resonance assemblies. We present the essentials of the four dimensional angular momentum algebra and construct electromagnetic tensor operators. The predictive power of the model is illustrated by ratios of reduced probabilities concerning electric de-excitations of various resonances to the nucleon.Comment: Phys. Rev. D (in press, 2001

    Spin-1 gravitational waves and their natural sources

    Full text link
    Non-vacuum exact gravitational waves invariant for a non Abelian two-dimensional Lie algebra generated by two Killing fields whose commutator is of light type, are described. The polarization of these waves, already known from previous works, is related to the sources. Non vacuum exact gravitational waves admitting only one Killing field of light type are also discussed.Comment: 10 pages, late

    Rotational symmetry and degeneracy: a cotangent-perturbed rigid rotator of unperturbed level multiplicity

    Full text link
    We predict level degeneracy of the rotational type in diatomic molecules described by means of a cotangent-hindered rigid rotator. The problem is shown to be exactly solvable in terms of non-classical Romanovski polynomials. The energies of such a system are linear combinations of t(t+1) and 1/[t(t+1)+1/4] terms with the non-negative integer principal quantum number t=n+|/bar{m}| being the sum of the degree n of the polynomials and the absolute value, |/bar{m}|, of the square root of the separation constant between the polar and azimuthal motions. The latter obeys, with respect to t, the same branching rule, |/bar{m}|=0,1,..., t, as does the magnetic quantum number with respect to the angular momentum, l, and, in this fashion, the t quantum number presents itself indistinguishable from l. In effect, the spectrum of the hindered rotator has the same (2t+1)-fold level multiplicity as the unperturbed one. For small t values, the wave functions and excitation energies of the perturbed rotator differ from the ordinary spherical harmonics, and the l(l+1) law, respectively, while approaching them asymptotically with increasing t. In this fashion the breaking of the rotational symmetry at the level of the representation functions is opaqued by the level degeneracy. The model provides a tool for the description of rotational bands with anomalously large gaps between the ground state and its first excitation.Comment: 10 pages, 6 figures; Molecular Physics 201

    The Trigonometric Rosen-Morse Potential in the Supersymmetric Quantum Mechanics and its Exact Solutions

    Full text link
    The analytic solutions of the one-dimensional Schroedinger equation for the trigonometric Rosen-Morse potential reported in the literature rely upon the Jacobi polynomials with complex indices and complex arguments. We first draw attention to the fact that the complex Jacobi polynomials have non-trivial orthogonality properties which make them uncomfortable for physics applications. Instead we here solve above equation in terms of real orthogonal polynomials. The new solutions are used in the construction of the quantum-mechanic superpotential.Comment: 16 pages 7 figures 1 tabl

    On the η\eta and f1_1(1420) Couplings to the Nucleon

    Full text link
    We consider neutral pseudoscalar, η\eta , and axial vector, f1(1420)f_1(1420), mesons in the OZI-rule-respecting flavor basis, {(sˉs),12(uˉu+dˉd)}\lbrace (\bar s s), {1\over \sqrt{2}}(\bar u u + \bar d d)\rbrace, and suggest a scenario for their coupling to the nucleon. Within this framework, the non--strange parts of the ηN\eta N and f1N_1 N couplings are modeled by means of triangular a0πNa_0\pi N, and KK(Λ/Σ)K K^* (\Lambda /\Sigma) vertices, while the strange ones partly proceed via Goldberger-Treiman relations, which have been concluded solely on the grounds of current universality. The suggested model explains the observed suppression of the ηN\eta N coupling with respect to the constituent quark model expectations, and predicts the coupling of f1f_1 to the nucleon.Comment: appears in Int. J. Mod. Phys. A (in press

    Nucleon form factors in the canonically quantized Skyrme model

    Full text link
    The explicit expressions for the electric, magnetic, axial and induced pseudoscalar form factors of the nucleons are derived in the {\it ab initio} quantized Skyrme model. The canonical quantization procedure ensures the existence of stable soliton solutions with good quantum numbers. The form factors are derived for representations of arbitrary dimension of the SU(2) group. After fixing the two parameters of the model, fπf_\pi and ee, by the empirical mass and electric mean square radius of the proton, the calculated electric and magnetic form factors are fairly close to the empirical ones, whereas the the axial and induced pseudoscalar form factors fall off too slowly with momentum transfer.Comment: 14pp including figure

    Electromagnetic couplings of elementary vector particles

    Full text link
    On the basis of the three fundamental principles of (i) Poincar\'{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector particles, i.e., massive spin-1 particles transforming in the /1/2,1/2) representation space of the Homogeneous Lorentz Group (HLG). We make the point that the first two symmetries alone do not fix the electromagnetic couplings uniquely but solely prescribe a general Lagrangian depending on two free parameters, here denoted by \xi and g. The first one defines the electric-dipole and the magnetic-quadrupole moments of the vector particle, while the second determines its magnetic-dipole and electric-quadrupole moments. In order to fix the parameters one needs an additional physical input suited for the implementation of the third principle. As such, one chooses Compton scattering off a vector target and requires the cross section to respect the unitarity bounds in the high energy limit. In result, we obtain the universal g=2, and \xi=0 values which completely characterize the electromagnetic couplings of the considered elementary vector field at tree level. The nature of this vector particle, Abelian versus non-Abelian, does not affect this structure. Merely, a partition of the g=2 value into non-Abelian, g_{na}, and Abelian, g_{a}=2-g_{na}, contributions occurs for non-Abelian fields with the size of g_{na} being determined by the specific non-Abelian group appearing in the theory of interest, be it the Standard Model or any other theory.Comment: 10 pages, 2 figures, contributed to the XI Mexican Workshop on Particles and Fields. Accepted in Phys. Rev.

    The Axial-Vector Current in Nuclear Many-Body Physics

    Full text link
    Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body problem. The Lorentz-invariant effective field theory contains nucleons, pions, isoscalar scalar (σ\sigma) and vector (ω\omega) fields, and isovector vector (ρ\rho) fields. The theory exhibits a nonlinear realization of SU(2)L×SU(2)RSU(2)_L \times SU(2)_R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of quantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for normal nuclear systems, it is possible to systematically expand the effective lagrangian in powers of the meson fields (and their derivatives) and to reliably truncate the expansion after the first few orders. Here it is shown that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion, satisfy both PCAC and the Goldberger--Treiman relation, and it is verified that the corresponding vector and axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be deduced.Comment: 32 pages, REVTeX 4.0 with 12pt.rtx, aps.rtx, revsymb.sty, revtex4.cls, plus 14 figures; two sentences added in Summary; two references adde

    The effects of meson mixing on dilepton spectra

    Get PDF
    The effect of scalar and vector meson mixing on the dilepton radiation from hot and dense hadronic matter is estimated in different isospin channels. In particular, we study the effect of σ\sigma-ω\omega and ρa0\rho-a_0 mixing and calculate the corresponding rates. Effects are found to be significant compared to standard π\pi-π\pi and KK-Kˉ{\bar K} annihilations. While the mixing in the isoscalar channel mostly gives a contribution in the invariant mass range between the two-pion threshold and the ω\omega peak, the isovector channel mixing induces an additional peak just below that of the ϕ\phi. Experimentally, the dilepton signals from ρ\rho-a0a_0 mixing seem to be more tractable than those from σ\sigma-ω\omega mixing.Comment: 10 pages, 9 figure
    corecore