302 research outputs found
ShakeMe: Key Generation From Shared Motion
Devices equipped with accelerometer sensors such as today's mobile devices
can make use of motion to exchange information. A typical example for shared
motion is shaking of two devices which are held together in one hand. Deriving
a shared secret (key) from shared motion, e.g. for device pairing, is an
obvious application for this. Only the keys need to be exchanged between the
peers and neither the motion data nor the features extracted from it. This
makes the pairing fast and easy. For this, each device generates an information
signal (key) independently of each other and, in order to pair, they should be
identical. The key is essentially derived by quantizing certain well
discriminative features extracted from the accelerometer data after an implicit
synchronization. In this paper, we aim at finding a small set of effective
features which enable a significantly simpler quantization procedure than the
prior art. Our tentative results with authentic accelerometer data show that
this is possible with a competent accuracy (%) and key strength (entropy
approximately bits).Comment: The paper is accepted to the 13th IEEE International Conference on
Pervasive Intelligence and Computing (PIComp-2015
Outlier edge detection using random graph generation models and applications
Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Detecting outlier nodes and edges is important for data mining and graph analytics. However, previous research in the field has merely focused on detecting outlier nodes. In this article, we study the properties of edges and propose effective outlier edge detection algorithm. The proposed algorithms are inspired by community structures that are very common in social networks. We found that the graph structure around an edge holds critical information for determining the authenticity of the edge. We evaluated the proposed algorithms by injecting outlier edges into some real-world graph data. Experiment results show that the proposed algorithms can effectively detect outlier edges. In particular, the algorithm based on the Preferential Attachment Random Graph Generation model consistently gives good performance regardless of the test graph data. More important, by analyzing the authenticity of the edges in a graph, we are able to reveal underlying structure and properties of a graph. Thus, the proposed algorithms are not limited in the area of outlier edge detection. We demonstrate three different applications that benefit from the proposed algorithms: (1) a preprocessing tool that improves the performance of graph clustering algorithms; (2) an outlier node detection algorithm; and (3) a novel noisy data clustering algorithm. These applications show the great potential of the proposed outlier edge detection techniques. They also address the importance of analyzing the edges in graph mining—a topic that has been mostly neglected by researchers.Academy of Finland supported this research
Self-Organized Operational Neural Networks for Severe Image Restoration Problems
Discriminative learning based on convolutional neural networks (CNNs) aims to
perform image restoration by learning from training examples of noisy-clean
image pairs. It has become the go-to methodology for tackling image restoration
and has outperformed the traditional non-local class of methods. However, the
top-performing networks are generally composed of many convolutional layers and
hundreds of neurons, with trainable parameters in excess of several millions.
We claim that this is due to the inherent linear nature of convolution-based
transformation, which is inadequate for handling severe restoration problems.
Recently, a non-linear generalization of CNNs, called the operational neural
networks (ONN), has been shown to outperform CNN on AWGN denoising. However,
its formulation is burdened by a fixed collection of well-known nonlinear
operators and an exhaustive search to find the best possible configuration for
a given architecture, whose efficacy is further limited by a fixed output layer
operator assignment. In this study, we leverage the Taylor series-based
function approximation to propose a self-organizing variant of ONNs, Self-ONNs,
for image restoration, which synthesizes novel nodal transformations onthe-fly
as part of the learning process, thus eliminating the need for redundant
training runs for operator search. In addition, it enables a finer level of
operator heterogeneity by diversifying individual connections of the receptive
fields and weights. We perform a series of extensive ablation experiments
across three severe image restoration tasks. Even when a strict equivalence of
learnable parameters is imposed, Self-ONNs surpass CNNs by a considerable
margin across all problems, improving the generalization performance by up to 3
dB in terms of PSNR
Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias
Each year more than 7 million people die from cardiac arrhythmias. Yet no robust solution exists today to detect such heart anomalies right at the moment they occur. The purpose of this study was to design a personalized health monitoring system that can detect early occurrences of arrhythmias from an individual's electrocardiogram (ECG) signal. We first modelled the common causes of arrhythmias in the signal domain as a degradation of normal ECG beats to abnormal beats. Using the degradation models, we performed abnormal beat synthesis which created potential abnormal beats from the average normal beat of the individual. Finally, a Convolutional Neural Network (CNN) was trained using real normal and synthesized abnormal beats. As a personalized classifier, the trained CNN can monitor ECG beats in real time for arrhythmia detection. Over 34 patients' ECG records with a total of 63,341 ECG beats from the MIT-BIH arrhythmia benchmark database, we have shown that the probability of detecting one or more abnormal ECG beats among the first three occurrences is higher than 99.4% with a very low false-alarm rate. 1 2017 The Author(s).Scopu
Global ECG Classification by Self-Operational Neural Networks with Feature Injection
Objective: Global (inter-patient) ECG classification for arrhythmia detection
over Electrocardiogram (ECG) signal is a challenging task for both humans and
machines. The main reason is the significant variations of both normal and
arrhythmic ECG patterns among patients. Automating this process with utmost
accuracy is, therefore, highly desirable due to the advent of wearable ECG
sensors. However, even with numerous deep learning approaches proposed
recently, there is still a notable gap in the performance of global and
patient-specific ECG classification performances. This study proposes a novel
approach to narrow this gap and propose a real-time solution with shallow and
compact 1D Self-Organized Operational Neural Networks (Self-ONNs). Methods: In
this study, we propose a novel approach for inter-patient ECG classification
using a compact 1D Self-ONN by exploiting morphological and timing information
in heart cycles. We used 1D Self-ONN layers to automatically learn
morphological representations from ECG data, enabling us to capture the shape
of the ECG waveform around the R peaks. We further inject temporal features
based on RR interval for timing characterization. The classification layers can
thus benefit from both temporal and learned features for the final arrhythmia
classification. Results: Using the MIT-BIH arrhythmia benchmark database, the
proposed method achieves the highest classification performance ever achieved,
i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N)
segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the
supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10%
recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs)
- …