6,258 research outputs found
Efficient Orthogonal Tensor Decomposition, with an Application to Latent Variable Model Learning
Decomposing tensors into orthogonal factors is a well-known task in
statistics, machine learning, and signal processing. We study orthogonal outer
product decompositions where the factors in the summands in the decomposition
are required to be orthogonal across summands, by relating this orthogonal
decomposition to the singular value decompositions of the flattenings. We show
that it is a non-trivial assumption for a tensor to have such an orthogonal
decomposition, and we show that it is unique (up to natural symmetries) in case
it exists, in which case we also demonstrate how it can be efficiently and
reliably obtained by a sequence of singular value decompositions. We
demonstrate how the factoring algorithm can be applied for parameter
identification in latent variable and mixture models
Blocking optimal -arborescences
Given a digraph and a positive integer , an arc set is called a \textbf{-arborescence} if it is the disjoint union of
spanning arborescences. The problem of finding a minimum cost -arborescence
is known to be polynomial-time solvable using matroid intersection. In this
paper we study the following problem: find a minimum cardinality subset of arcs
that contains at least one arc from every minimum cost -arborescence. For
, the problem was solved in [A. Bern\'ath, G. Pap , Blocking optimal
arborescences, IPCO 2013]. In this paper we give an algorithm for general
that has polynomial running time if is fixed
Covering complete partite hypergraphs by monochromatic components
A well-known special case of a conjecture attributed to Ryser states that
k-partite intersecting hypergraphs have transversals of at most k-1 vertices.
An equivalent form was formulated by Gy\'arf\'as: if the edges of a complete
graph K are colored with k colors then the vertex set of K can be covered by at
most k-1 sets, each connected in some color. It turned out that the analogue of
the conjecture for hypergraphs can be answered: Z. Kir\'aly proved that in
every k-coloring of the edges of the r-uniform complete hypergraph K^r (r >=
3), the vertex set of K^r can be covered by at most sets,
each connected in some color.
Here we investigate the analogue problem for complete r-uniform r-partite
hypergraphs. An edge coloring of a hypergraph is called spanning if every
vertex is incident to edges of any color used in the coloring. We propose the
following analogue of Ryser conjecture.
In every spanning (r+t)-coloring of the edges of a complete r-uniform
r-partite hypergraph, the vertex set can be covered by at most t+1 sets, each
connected in some color.
Our main result is that the conjecture is true for 1 <= t <= r-1. We also
prove a slightly weaker result for t >= r, namely that t+2 sets, each connected
in some color, are enough to cover the vertex set.
To build a bridge between complete r-uniform and complete r-uniform r-partite
hypergraphs, we introduce a new notion. A hypergraph is complete r-uniform
(r,l)-partite if it has all r-sets that intersect each partite class in at most
l vertices.
Extending our results achieved for l=1, we prove that for any r >= 3, 2 <= l
= 1+r-l, in every spanning k-coloring of the edges of a complete
r-uniform (r,l)-partite hypergraph, the vertex set can be covered by at most
1+\lfloor \frac{k-r+\ell-1}{\ell}\rfloor sets, each connected in some color.Comment: 14 page
On the tractability of some natural packing, covering and partitioning problems
In this paper we fix 7 types of undirected graphs: paths, paths with
prescribed endvertices, circuits, forests, spanning trees, (not necessarily
spanning) trees and cuts. Given an undirected graph and two "object
types" and chosen from the alternatives above, we
consider the following questions. \textbf{Packing problem:} can we find an
object of type and one of type in the edge set of
, so that they are edge-disjoint? \textbf{Partitioning problem:} can we
partition into an object of type and one of type ?
\textbf{Covering problem:} can we cover with an object of type
, and an object of type ? This framework includes 44
natural graph theoretic questions. Some of these problems were well-known
before, for example covering the edge-set of a graph with two spanning trees,
or finding an - path and an - path that are
edge-disjoint. However, many others were not, for example can we find an
- path and a spanning tree that are
edge-disjoint? Most of these previously unknown problems turned out to be
NP-complete, many of them even in planar graphs. This paper determines the
status of these 44 problems. For the NP-complete problems we also investigate
the planar version, for the polynomial problems we consider the matroidal
generalization (wherever this makes sense)
The Algebraic Approach to Phase Retrieval and Explicit Inversion at the Identifiability Threshold
We study phase retrieval from magnitude measurements of an unknown signal as
an algebraic estimation problem. Indeed, phase retrieval from rank-one and more
general linear measurements can be treated in an algebraic way. It is verified
that a certain number of generic rank-one or generic linear measurements are
sufficient to enable signal reconstruction for generic signals, and slightly
more generic measurements yield reconstructability for all signals. Our results
solve a few open problems stated in the recent literature. Furthermore, we show
how the algebraic estimation problem can be solved by a closed-form algebraic
estimation technique, termed ideal regression, providing non-asymptotic success
guarantees
- …