28 research outputs found

    A Multi-modality Approach Towards Elucidation of the Mechanism for Human Achilles Tendon Bending during Passive Ankle Rotation

    Get PDF
    © 2018 The Author(s). The in vitro unconstrained Achilles tendon is nearly straight, while in vivo experiments reveal that the proximal region of the Achilles tendon, adjacent to Kager's fat pad, bends ventrally during plantarflexion but remains nearly straight during dorsiflexion. Tendon bending is an important factor in determining the displacement of the foot compared to the shortening of the muscle fibers. The objective of this study was to elucidate the various mechanisms that could cause tendon bending, which currently remain unknown. Examination of Thiel-embalmed cadavers, with preservation of native articular joint mobility, revealed that the Achilles tendon still bent ventrally even when its surrounding tissues, including the skin surface, Kager's fat pad, and distal portions of the soleus muscle were removed. Shear modulus and collagen fiber orientation were distributed homogeneously with respect to the longitudinal line of the tendon, minimizing their causative contributions to the bending. Given that tendon bending is not caused by either the nature of the deformations of the tissues surrounding the Achilles tendon or its physical properties, we conclude that it results from the geometric architecture of the Achilles tendon and its configuration with respect to the surrounding tissues

    CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)

    No full text
    Due to CO2-philic nature of polyoxyethylene (POE), a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS) support by a spray-coating manner, the resulting thin film composite (TFC) membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine) (PAMAM) was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC) and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions

    Effect of amine structure on CO2 capture by polymeric membranes

    No full text
    Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance

    Effect of amine structure on CO<sub>2</sub> capture by polymeric membranes

    No full text
    <p>Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO<sub>2</sub> separation properties over H<sub>2</sub>. However, the CO<sub>2</sub> permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO<sub>2</sub> determining agent in the current CO<sub>2</sub> capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO<sub>2</sub> separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO<sub>2</sub> permeability coefficient of MEA containing membrane was 604 barrer with CO<sub>2</sub> selectivity of 58.5 over H<sub>2</sub>, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO<sub>2</sub>-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO<sub>2</sub> separation performance.</p

    Nicotine restores endothelial dysfunction caused by excess sFlt1 and sEng in an in vitro model of preeclamptic vascular endothelium: a possible therapeutic role of nicotinic acetylcholine receptor (nAChR) agonists for preeclampsia.

    Full text link
    OBJECTIVE: In this study we tested the hypothesis that nicotine restores proangiogenic functions to endothelial cells pretreated with soluble fms-like tyrosine kinase 1 and/or soluble endoglin. STUDY DESIGN: Wound healing assay and tube formation assay were performed using human umbilical vein endothelial cells treated with nicotine (10(-9) to 10(-6) M), and with various combinations of soluble fms-like tyrosine kinase 1 (100 ng/mL), soluble endoglin (100 ng/mL), and nicotine (10(-7) M). Enzyme-linked immunosorbent assay was performed to measure vascular endothelial growth factor, placental growth factor, and transforming growth factor-beta1 concentrations in the conditioned media treated with nicotine (10(-9) to 10(-6) M). RESULTS: Nicotine significantly facilitated endothelial migration and tube formation. By contrast, soluble fms-like tyrosine kinase 1 and/or soluble endoglin suppressed these endothelial functions. Nicotine restored these soluble fms-like tyrosine kinase 1 and/or soluble endoglin-reduced endothelial functions. Placental growth factor, but not transforming growth factor-beta1, production was significantly stimulated by the presence of nicotine. Vascular endothelial growth factor was undetectable. CONCLUSION: Our results suggest a possible mechanism for the protective effects of cigarette smoking against preeclampsia, thus proposing a therapeutic potential of nicotine or other nicotinic acetylcholine receptor agonists for preeclampsia

    The effect of tumor-associated protein RCAS1 gene silencing on blood pressure and urinary protein excretion in pregnant mouse: a pilot study.

    Full text link
    OBJECTIVE: The level of tumor-associated receptor-binding cancer antigen that is expressed on SiSo cells (RCAS1) is decreased significantly in preeclamptic pregnancies. We hypothesized that RCAS1 protein gene silencing might affect blood pressure and proteinuria in pregnant mice. STUDY DESIGN: On postcoital day 7.5, pregnant imprinting control region mice were subjected to the transfer of small interfering RNA (siRNA) against RCAS1 protein into the uterine cavity with the use of a hemagglutinating virus Japan envelope. Scramble siRNA was used as a negative control. Blood pressure and urine albumin/creatinine measurements were performed. The effect of the transferred siRNA was examined in uterine samples on postcoital day 8.5 with the use of Western blotting and immunohistochemistry analyses. RESULTS: In the RCAS1 siRNA group, blood pressure significantly raised on postcoital days 9.5, 10.5, 11.5, and 15.5, whereas urine albumin/creatinine ratio was significantly increased on postcoital day 9.5 CONCLUSION: Our results suggest the importance of RCAS1 protein in the pathophysiologic condition of preeclampsia
    corecore