19 research outputs found

    Vitreous silica distends in helium gas: acoustic vs. static compressibilities

    Full text link
    Sound velocities of vitreous silica are measured under He compression in the pressure range 0-6 GPa by Brillouin light scattering. It is found that the well-known anomalous maximum in the pressure dependence of the compressibility is suppressed by He incorporation into the silica network. This shows that the elastic anomaly relates to the collapse of the largest interstitial voids in the structure. The huge difference between the static and the acoustic compressibilities indicates that the amount of incorporated helium still increases at 6 GPa.Comment: 5 pages, 4 figure

    Elasticité de la silice vitreuse sous pression de gaz rares

    No full text
    We present an in situ study of vitreous silica v-SiO2 under hydrostatic noble gases pressure by Brillouin and Raman spectroscopy. Samples are pressurized in helium, neon and argon in a diamond anvil cell, in the range 0 - 8 GPa. Helium and neon atoms penetrate in the pressurized glass structure. We estimate that about one atom of helium per SiO4 tetrahedron and about half in the neon case are adsorbed at 6 GPa. Bulk and shear moduli as a function of fluid pressure are obtained from measurements of the longitudinal and transverse acoustic velocities. The behaviour anomaly of the bulk modulus of v-SiO2 (minimum at 2 GPa) is suppressed by He and Ne adsorption, structural rearrangements associated with this anomaly being prevented by the occupation of interstitial sites by helium and neon atoms. In the presence of helium and neon, the V(P) equation of state does not allow to recover bulk modulus because silica behaves like an open porous medium. Monte-Carlo simulation of adsorption isotherms combined with the generalized theory of poromechanics allows to describe volume deformations and adsorbed fluid amount in agreement with experimental results. In the neon case, adsorption-desorption kinetics is observed by Brillouin spectroscopy. Measurements of VV and VH Raman spectra of v-SiO2 are made as function of fluid pressure. The reduction of Si–O–Si angles distribution is prevented by the insertion of helium.Nous présentons une étude in situ du verre de silice v-SiO2 sous pression hydrostatique de gaz rares par spectroscopie Brillouin et Raman. Les échantillons sont pressurisés avec de l'hélium, du néon et de l'argon dans une cellule à enclume de diamant, dans la gamme 0 - 8 GPa. Les atomes d'hélium et de néon pénètrent dans la structure du verre sous pression. On estime qu'environ un atome d'hélium par tétraèdre SiO4 et qu'environ deux fois moins dans le cas du néon sont adsorbés à 6 GPa. Les modules de compression et de cisaillement en fonction de la pression de fluide sont obtenus à partir des mesures des vitesses acoustiques longitudinales et transverses. L'anomalie de comportement du module de compression de v-SiO2 (minimum à 2 GPa) est supprimée par l'adsorption de He et de Ne, les réarrangements structuraux liés à cette anomalie étant empêchés parl'occupation des sites interstitiels par les atomes d'hélium et de néon. En présence d'hélium et de néon, l'équation d'état V (P) ne permet pas de retrouver le module de compression car la silice se comporte comme un milieu poreux ouvert. La simulation Monte-Carlo des isothermes d'adsorption combinée à la théorie généralisée de la poromécanique permet de décrire les déformations volumiques et les quantités de fluide adsorbées en accord avec les résultats expérimentaux. Dans le cas du néon, la cinétique d'adsorption-désorption est observée par spectroscopie Brillouin. Les spectres Raman VV et VH de v-SiO2 ont été mesurés en fonction de la pression de fluide. La réduction de la distribution des angles Si–O–Si est empêchée par l'insertion d'hélium

    Elasticity of vitreous silica under rare gases high pressure

    No full text
    Nous présentons une étude in situ du verre de silice v-SiO2 sous pression hydrostatique de gaz rares par spectroscopie Brillouin et Raman. Les échantillons sont pressurisés avec de l'hélium, du néon et de l'argon dans une cellule à enclume de diamant, dans la gamme 0 - 8 GPa. Les atomes d'hélium et de néon pénètrent dans la structure du verre sous pression. On estime qu'environ un atome d'hélium par tétraèdre SiO4 et qu'environ deux fois moins dans le cas du néon sont adsorbés à 6 GPa. Les modules de compression et de cisaillement en fonction de la pression de fluide sont obtenus à partir des mesures des vitesses acoustiques longitudinales et transverses. L'anomalie de comportement du module de compression de v-SiO2 (minimum à 2 GPa) est supprimée par l'adsorption de He et de Ne, les réarrangements structuraux liés à cette anomalie étant empêchés parl'occupation des sites interstitiels par les atomes d'hélium et de néon. En présence d'hélium et de néon, l'équation d'état V (P) ne permet pas de retrouver le module de compression car la silice se comporte comme un milieu poreux ouvert. La simulation Monte-Carlo des isothermes d'adsorption combinée à la théorie généralisée de la poromécanique permet de décrire les déformations volumiques et les quantités de fluide adsorbées en accord avec les résultats expérimentaux. Dans le cas du néon, la cinétique d'adsorption-désorption est observée par spectroscopie Brillouin. Les spectres Raman VV et VH de v-SiO2 ont été mesurés en fonction de la pression de fluide. La réduction de la distribution des angles Si–O–Si est empêchée par l'insertion d'hélium.We present an in situ study of vitreous silica v-SiO2 under hydrostatic noble gases pressure by Brillouin and Raman spectroscopy. Samples are pressurized in helium, neon and argon in a diamond anvil cell, in the range 0 - 8 GPa. Helium and neon atoms penetrate in the pressurized glass structure. We estimate that about one atom of helium per SiO4 tetrahedron and about half in the neon case are adsorbed at 6 GPa. Bulk and shear moduli as a function of fluid pressure are obtained from measurements of the longitudinal and transverse acoustic velocities. The behaviour anomaly of the bulk modulus of v-SiO2 (minimum at 2 GPa) is suppressed by He and Ne adsorption, structural rearrangements associated with this anomaly being prevented by the occupation of interstitial sites by helium and neon atoms. In the presence of helium and neon, the V(P) equation of state does not allow to recover bulk modulus because silica behaves like an open porous medium. Monte-Carlo simulation of adsorption isotherms combined with the generalized theory of poromechanics allows to describe volume deformations and adsorbed fluid amount in agreement with experimental results. In the neon case, adsorption-desorption kinetics is observed by Brillouin spectroscopy. Measurements of VV and VH Raman spectra of v-SiO2 are made as function of fluid pressure. The reduction of Si–O–Si angles distribution is prevented by the insertion of helium

    Current status and predicted impact of climate change on forest production and biogeochemistry in the temperate oceanic European zone: review and prospects for Belgium as a case study

    No full text
    Reviews of the current statuses of forests and the impacts of climate change on forests exist at the (sub)continental scale, but rarely at country and regional levels, meaning that information on causal factors, their impacts, and specific regional properties is often inconsistent and lacking in depth. Here, we present the current status of forest production and biogeochemistry and the expected impacts of climate change on them for Belgium. This work represents a case study for the temperate oceanic zone, the most important bioclimatic zone in northwestern Europe. Results show that Belgian forests are mainly young, very productive, and have a high C-sequestration capacity. Major negative anomalies in tree vitality were observed in the 1990s and—as result of disturbances—in the last decade for sensitive species as poplars and European beech. The most severe disturbances were caused by extreme climatic events, directly (e.g. storms) or indirectly (e.g. insect outbreaks after a mild autumn with an early/severe frost). Because of atmospheric deposition and soil fertilization (due to the previous use of the land), nutrient stocks of Belgian forests are likely to sustain the future enhancement in productivity which is expected to follow the increase in atmospheric CO2 concentration that will occur in years to come. However, in the long term, such (enhanced) forest production is likely to be limited by nutrient deficiencies at poor sites and by drought for sensitive species such as beech and (particularly) Norway spruce. Drought conditions will likely increase in the future, but adverse effects are expected on a relatively limited number of tree species. The potential impacts of windstorms, insects and fungi should be carefully investigated, whereas fires are less of a concern

    Polarized Raman spectroscopy of v-SiO2 under rare-gas compression

    No full text
    International audienceHigh-pressure polarized Raman spectra of vitreous silica are measured up to 8 GPa in a diamond-anvil cell atroom temperature. The combined use of either a nonpenetrating pressurizing medium—argon—or a penetrating one—helium, allows one to separate density from stress effects on the Raman frequencies. In the framework of a simple central force model, the results emphasize the distinct role played by the shrinkage of the intertetrahedral angle Si-O-Si and the force-constant stiffening during the compression. The polarization analysis further reveals the existence of an additional isotropic component in the high-frequency wing of the boson peak. The pressure dependence of the genuine boson peak frequency is found to be much weaker than previously reported and even goes through a minimum around 2 GPa in remarkable coincidence with the anomalous compressibility maximum of silica

    Poroelastic behavior of vitreous silica under rare gas compression

    No full text
    International audienceBelow 10 GPa, hydrostatic pressures P are usually obtained in diamond-anvil cell with soft pressure transmitting medium such as methanol-ethanol mixture. When such experiments are performed in this P range for v-SiO2, the volumetric strain of the sample agrees with that expected from its bulk modulus, . It was revealed recently that v-SiO2 submitted to high pressures under He atmosphere exhibits surprisingly small relative volume changes leading to an apparent B greater than hundred GPa at ambient P, much higher than the well-known modulus GPa of silica. Using Brillouin light scattering we evidence that the elastic moduli are only weakly affected by the presence of He. The difference between the static and the acoustic measurements reveals that silica pressurized under He behaves as an open system allowing He to penetrate into the interstitial free volume of the network. In that case, the static measurement underestimates the compressibility by a term due to the gas charging the sample. The large difference found here shows that He continues penetrating v-SiO2 up to our highest investigated P, i.e. 6 GPa. Such a strong effect of the pressurizing medium on the static compressibility is usually observed in materials with open porosity, such as zeolites. It results from pore filling by molecules of the pressurizing fluid. An estimate of the amount of He entering v-SiO2 is derived from the measured refractive index, leading to the unexpected value of more than 1 mole of He per mole of SiO2 at 6 GPa [1]. Finally we present molecular simulations relating the amount of fluid adsorbed to the volumetric strain of the network. We show that a generalized poromechanical approach can be applied to silica glass in which the free volume exists only at the sub-nanometric length scale. In that picture, the small apparent compressibility of silica under high He or Ne pressure results from an adsorption-induced expansion [2].[1] C. Weigel, A. Polian, M. Kint, B. Rufflé, M. Foret, R. Vacher,, “Vitreous Silica Distends in Helium Gas: Acoustic Versus Static Compressibilies” Phys. Rev. Lett., 109, 245504 (2012).[2] B. Coasne, C. Weigel, A. Polian, M. Kint, J. Rouquette, J. Haines, M. Foret, R. Vacher, B. Rufflé, “The Startling Poroelastic Behavior of Vitreous Silica” submitted (2014)

    Poroelastic behavior of vitreous silica under rare gas compression

    No full text
    International audienceBelow 10 GPa, hydrostatic pressures P are usually obtained in diamond-anvil cell with soft pressure transmitting medium such as methanol-ethanol mixture. When such experiments are performed in this P range for v-SiO2, the volumetric strain of the sample agrees with that expected from its bulk modulus, . It was revealed recently that v-SiO2 submitted to high pressures under He atmosphere exhibits surprisingly small relative volume changes leading to an apparent B greater than hundred GPa at ambient P, much higher than the well-known modulus GPa of silica. Using Brillouin light scattering we evidence that the elastic moduli are only weakly affected by the presence of He. The difference between the static and the acoustic measurements reveals that silica pressurized under He behaves as an open system allowing He to penetrate into the interstitial free volume of the network. In that case, the static measurement underestimates the compressibility by a term due to the gas charging the sample. The large difference found here shows that He continues penetrating v-SiO2 up to our highest investigated P, i.e. 6 GPa. Such a strong effect of the pressurizing medium on the static compressibility is usually observed in materials with open porosity, such as zeolites. It results from pore filling by molecules of the pressurizing fluid. An estimate of the amount of He entering v-SiO2 is derived from the measured refractive index, leading to the unexpected value of more than 1 mole of He per mole of SiO2 at 6 GPa [1]. Finally we present molecular simulations relating the amount of fluid adsorbed to the volumetric strain of the network. We show that a generalized poromechanical approach can be applied to silica glass in which the free volume exists only at the sub-nanometric length scale. In that picture, the small apparent compressibility of silica under high He or Ne pressure results from an adsorption-induced expansion [2].[1] C. Weigel, A. Polian, M. Kint, B. Rufflé, M. Foret, R. Vacher,, “Vitreous Silica Distends in Helium Gas: Acoustic Versus Static Compressibilies” Phys. Rev. Lett., 109, 245504 (2012).[2] B. Coasne, C. Weigel, A. Polian, M. Kint, J. Rouquette, J. Haines, M. Foret, R. Vacher, B. Rufflé, “The Startling Poroelastic Behavior of Vitreous Silica” submitted (2014)
    corecore