96 research outputs found

    Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the Decoder Network

    Full text link
    Variational autoencoders (VAEs) are one of the deep generative models that have experienced enormous success over the past decades. However, in practice, they suffer from a problem called posterior collapse, which occurs when the encoder coincides, or collapses, with the prior taking no information from the latent structure of the input data into consideration. In this work, we introduce an inverse Lipschitz neural network into the decoder and, based on this architecture, provide a new method that can control in a simple and clear manner the degree of posterior collapse for a wide range of VAE models equipped with a concrete theoretical guarantee. We also illustrate the effectiveness of our method through several numerical experiments.Comment: accepted to ICML 2023, some notations adjusted from the submitted versio

    FUNGAL BIODEGRADATION OF BISPHENOL A AND BENZOPHENONE

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    A gene expression test for depression

    Get PDF
    Purpose: Recently, we could distinguished patients with major depressive disorder (MDD) from nonpsychiatric controls with high accuracy using a panel of five gene expression markers (ARHGAP24, HDAC5, PDGFC, PRNP, and SLC6A4) in leukocyte. In the present study, we examined whether this biological test is able to discriminate patients with MDD from those without MDD, including those with schizophrenia and bipolar disorder. Patients and methods: We measured messenger ribonucleic acid expression levels of the aforementioned five genes in peripheral leukocytes in 17 patients with schizophrenia and 36 patients with bipolar disorder using quantitative real-time polymerase chain reaction (PCR), and we combined these expression data with our previous expression data of 25 patients with MDD and 25 controls. Subsequently, a linear discriminant function was developed for use in discriminating between patients with MDD and without MDD. Results: This expression panel was able to segregate patients with MDD from those without MDD with a sensitivity and specificity of 64% and 67.9%, respectively. Conclusion: Further research to identify MDD-specific markers is needed to improve the performance of this biological test

    Psychosocial functioning in patients with treatment-resistant depression after group cognitive behavioral therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although patients with Treatment Resistant Depression (TRD) often have impaired social functioning, few studies have investigated the effectiveness of psychosocial treatment for these patients. We examined whether adding group cognitive behavioral therapy (group-CBT) to medication would improve both the depressive symptoms and the social functioning of patient with mild TRD, and whether any improvements would be maintained over one year.</p> <p>Methods</p> <p>Forty-three patients with TRD were treated with 12 weekly sessions of group-CBT. Patients were assessed with the Global Assessment of Functioning scale (GAF), the 36-item Short-Form Health Survey (SF-36), the Hamilton Rating Scale for Depression (HRSD), the Dysfunctional Attitudes Scale (DAS), and the Automatic Thought Questionnaire-Revised (ATQ-R) at baseline, at the termination of treatment, and at the 12-month follow-up.</p> <p>Results</p> <p>Thirty-eight patients completed treatment; five dropped out. For the patients who completed treatment, post-treatment scores on the GAF and SF-36 were significantly higher than baseline scores. Scores on the HRSD, DAS, and ATQ-R were significantly lower after the treatment. Thus patients improved on all measurements of psychosocial functioning and mood symptoms. Twenty patients participated in the 12-month follow-up. Their improvements for psychosocial functioning, depressive symptoms, and dysfunctional cognitions were sustained at 12 months following the completion of group-CBT.</p> <p>Conclusions</p> <p>These findings suggest a positive effect that the addition of cognitive behavioural group therapy to medication on depressive symptoms and social functioning of mildly depressed patients, showing treatment resistance.</p

    The structure and development of Xenopus laevis cornea.

    Get PDF
    The African clawed frog, Xenopus laevis, is a widely used model organism for tissue development. We have followed the process of corneal development closely in Xenopus and examined the corneal ultrastructure at each stage during its formation. Xenopus cornea development starts at stage 25 from a simple embryonic epidermis overlying the developing optic vesicle. After detachment of the lens placode which takes place around stage 30, cranial neural crest cells start to invade the space between the lens and the embryonic epidermis to construct the corneal endothelium. At stage 41, a second wave of migratory cells containing presumptive keratocytes invades the matrix leading to the formation of inner cornea and outer cornea. Three-dimensional electron microscopic examination shows that a unique cell mass, the stroma attracting center, connects the two layers like the center pole of a tent. After stage 48, many secondary stromal keratocytes individually migrate to the center and form the stroma layer. At stage 60, the stroma space is largely filled by collagen lamellae and keratocytes, and the stroma attracting center disappears. At early metamorphosis, the embryonic epithelium gradually changes to the adult corneal epithelium, which is covered by microvilli. Around stage 62 the embryonic epithelium thickens and a massive cell death is observed in the epithelium, coinciding with eyelid opening. After metamorphosis, the frog cornea has attained the adult structure of three cellular layers, epithelium, stroma, and endothelium, and two acellular layers between the cellular layers, namely the Bowman's layer and Descemet's membrane. After initial completion, Xenopus cornea, in particular the stroma, continues to thicken and continues to enlarge throughout the lifetime of the animal. In the adult, a p63 positive limbus-like wavy structure is observed at the peripheral edge of the cornea. Proliferation analysis shows that the basal corneal epithelial cells actively divide and there are a small number of proliferating cells among the stroma and endothelial cells. This study shows that the development and structure of Xenopus cornea is largely conserved with human although there are some unique processes in Xenopus
    corecore