3,588 research outputs found
Numerical study of large-eddy breakup and its effect on the drag characteristics of boundary layers
The break-up of a field of eddies by a flat-plate obstacle embedded in a boundary layer is studied using numerical solutions to the two-dimensional Navier-Stokes equations. The flow is taken to be incompressible and unsteady. The flow field is initiated from rest. A train of eddies of predetermined size and strength are swept into the computational domain upstream of the plate. The undisturbed velocity profile is given by the Blasius solution. The disturbance vorticity generated at the plate and wall, plus that introduced with the eddies, mix with the background vorticity and is transported throughout the entire flow. All quantities are scaled by the plate length, the unidsturbed free-stream velocity, and the fluid kinematic viscosity. The Reynolds number is 1000, the Blasius boundary layer thickness is 2.0, and the plate is positioned a distance of 1.0 above the wall. The computational domain is four units high and sixteen units long
Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)
The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations
Pterodactyl: Thermal Protection System for Integrated Control Design of a Mechanically Deployed Entry Vehicle
The need for precision landing of high mass payloads on Mars and the return of sensitive samples from other planetary bodies to specific locations on Earth is driving the development of an innovative NASA technology referred to as the Deployable Entry Vehicle (DEV). A DEV has the potential to deliver an equivalent science payload with a stowed diameter 3 to 4 times smaller than a traditional rigid capsule configuration. However, the DEV design does not easily lend itself to traditional methods of directional control. The NASA Space Technology Mission Directorate (STMD)s Pterodactyl project is currently investigating the effectiveness of three different Guidance and Control (G&C) systems actuated flaps, Center of Gravity (CG) or mass movement, and Reaction Control System (RCS) for use with a DEV using the Adaptable, Deployable, Entry, and Placement Technology (ADEPT) design. This paper details the Thermal Protection System (TPS) design and associated mass estimation efforts for each of the G&C systems. TPS is needed for the nose cap of the DEV and the flaps of the actuated flap control system. The development of a TPS selection, sizing, and mass estimation method designed to deal with the varying requirements for the G&C options throughout the trajectory is presented. The paper discusses the methods used to i) obtain heating environments throughout the trajectory with respect to the chosen control system and resulting geometry; ii) determine a suitable TPS material; iii) produce TPS thickness estimations; and, iv) determine the final TPS mass estimation based on TPS thickness, vehicle control system, vehicle structure, and vehicle payload
A Hamilton-Jacobi approach to non-slow-roll inflation
I describe a general approach to characterizing cosmological inflation
outside the standard slow-roll approximation, based on the Hamilton-Jacobi
formulation of scalar field dynamics. The basic idea is to view the equation of
state of the scalar field matter as the fundamental dynamical variable, as
opposed to the field value or the expansion rate. I discuss how to formulate
the equations of motion for scalar and tensor fluctuations in situations where
the assumption of slow roll is not valid. I apply the general results to the
simple case of inflation from an ``inverted'' polynomial potential, and to the
more complicated case of hybrid inflation.Comment: 21 pages, RevTeX (minor revisions to match published version
Completing Natural Inflation
If the inflaton is a pseudo-scalar axion, the axion shift symmetry can
protect the flatness of its potential from too large radiative corrections.
This possibility, known as natural inflation, requires an axion scale which is
greater than the (reduced) Planck scale. It is unclear whether such a high
value is compatible with an effective field theoretical description, and if the
global axionic symmetry survives quantum gravity effects. We propose a
mechanism which provides an effective large axion scale, although the original
one is sub-Planckian. The mechanism is based on the presence of two axions,
with a potential provided by two anomalous gauge groups. The effective large
axion scale is due to an almost exact symmetry between the couplings of the
axions to the anomalous groups. We also comment on a possible implementation in
heterotic string theory.Comment: 9 pages, 1 figur
Phase transitions and statistical mechanics for BPS Black Holes in AdS/CFT
Using the general framework developed in hep-th/0607056, we study in detail
the phase space of BPS Black Holes in AdS, for the case where all three
electric charges are equal. Although these solitons are supersymmetric with
zero Hawking temperature, it turns out that these Black Holes have rich phase
structure with sharp phase transitions associated to a corresponding critical
generalized temperature. We are able to rewrite the gravity variables in terms
of dual CFT variables and compare the gravity phase diagram with the free dual
CFT phase diagram. In particular, the elusive supergravity constraint
characteristic of these Black Holes is particulary simple and in fact appears
naturally in the dual CFT in the definition of the BPS Index. Armed with this
constraint, we find perfect match between BH and free CFT charges up to
expected constant factors.Comment: 14 pages, 5 figures, corrected typos and references adde
Second Order General Slow-Roll Power Spectrum
Recent combined results from the Wilkinson Microwave Anisotropy Probe (WMAP)
and Sloan Digital Sky Survey (SDSS) provide a remarkable set of data which
requires more accurate and general investigation. Here we derive formulae for
the power spectrum P(k) of the density perturbations produced during inflation
in the general slow-roll approximation with second order corrections. Also,
using the result, we derive the power spectrum in the standard slow-roll
picture with previously unknown third order corrections.Comment: 11 pages, 1 figure ; A typo in Eq. (38) is fixed ; References
expanded and a note adde
The Emergence of the Modern Universe: Tracing the Cosmic Web
This is the report of the Ultraviolet-Optical Working Group (UVOWG)
commissioned by NASA to study the scientific rationale for new missions in
ultraviolet/optical space astronomy approximately ten years from now, when the
Hubble Space Telescope (HST) is de-orbited. The UVOWG focused on a scientific
theme, The Emergence of the Modern Universe, the period from redshifts z = 3 to
0, occupying over 80% of cosmic time and beginning after the first galaxies,
quasars, and stars emerged into their present form. We considered
high-throughput UV spectroscopy (10-50x throughput of HST/COS) and wide-field
optical imaging (at least 10 arcmin square). The exciting science to be
addressed in the post-HST era includes studies of dark matter and baryons, the
origin and evolution of the elements, and the major construction phase of
galaxies and quasars. Key unanswered questions include: Where is the rest of
the unseen universe? What is the interplay of the dark and luminous universe?
How did the IGM collapse to form the galaxies and clusters? When were galaxies,
clusters, and stellar populations assembled into their current form? What is
the history of star formation and chemical evolution? Are massive black holes a
natural part of most galaxies? A large-aperture UV/O telescope in space
(ST-2010) will provide a major facility in the 21st century for solving these
scientific problems. The UVOWG recommends that the first mission be a 4m
aperture, SIRTF-class mission that focuses on UV spectroscopy and wide-field
imaging. In the coming decade, NASA should investigate the feasibility of an 8m
telescope, by 2010, with deployable optics similar to NGST. No high-throughput
UV/Optical mission will be possible without significant NASA investments in
technology, including UV detectors, gratings, mirrors, and imagers.Comment: Report of UV/O Working Group to NASA, 72 pages, 13 figures, Full
document with postscript figures available at
http://casa.colorado.edu/~uvconf/UVOWG.htm
- …