57 research outputs found

    Visualising pathways for learning about novelty in the rodent brain

    Get PDF
    Recognition memory is the ability to distinguish novel from familiar stimuli. This thesis explores opposing models of recognition memory that alternatively assume that the perirhinal cortex and hippocampus (regions of the medial temporal lobe) must functionally interact to support recognition memory or that the perirhinal cortex can support this process independently. Additionally, the way in which these areas differentially interact to support learning about novel compared to familiar stimuli was examined. To achieve this, rats with lesions to the hippocampus or perirhinal cortex were given tests of object recognition memory or allowed to explore novel stimuli, after which, regional neuronal activity and network interactions were explored. This was achieved by immediate-early gene imaging; the expression of c-fos was used as a marker of neuronal activity, allowing for the assessment of regional activity at an extremely high anatomical resolution. Network interactions were explored using structural equation modelling; a statistical technique that made it possible to test if the observed activity could be mapped on to known anatomical pathways. In this way, network dynamics supporting these behavioural tasks were explored. Thus, the functional interdependence of the hippocampus and perirhinal cortex was tested both when the brain was intact and following lesions. This was done at multiple levels; behaviourally, at the level of regional activation and at the level of systems interactions

    Visualising pathways for learning about novelty in the rodent brain

    Get PDF
    Recognition memory is the ability to distinguish novel from familiar stimuli. This thesis explores opposing models of recognition memory that alternatively assume that the perirhinal cortex and hippocampus (regions of the medial temporal lobe) must functionally interact to support recognition memory or that the perirhinal cortex can support this process independently. Additionally, the way in which these areas differentially interact to support learning about novel compared to familiar stimuli was examined. To achieve this, rats with lesions to the hippocampus or perirhinal cortex were given tests of object recognition memory or allowed to explore novel stimuli, after which, regional neuronal activity and network interactions were explored. This was achieved by immediate-early gene imaging; the expression of c-fos was used as a marker of neuronal activity, allowing for the assessment of regional activity at an extremely high anatomical resolution. Network interactions were explored using structural equation modelling; a statistical technique that made it possible to test if the observed activity could be mapped on to known anatomical pathways. In this way, network dynamics supporting these behavioural tasks were explored. Thus, the functional interdependence of the hippocampus and perirhinal cortex was tested both when the brain was intact and following lesions. This was done at multiple levels; behaviourally, at the level of regional activation and at the level of systems interactions

    Do the rat anterior thalamic nuclei contribute to behavioural flexibility?

    Get PDF
    The rodent anterior thalamic nuclei (ATN) are vital for spatial memory. A consideration of their extensive frontal connections suggests that these nuclei may also subserve non-spatial functions. The current experiments explored the importance of the ATN for different aspects of behavioural flexibility, including their contribution to tasks typically associated with frontal cortex. In Experiment 1, rats with ATN lesions were tested on a series of response and visual discriminations in an operant box and, subsequently, in a water tank. The tasks included assessments of reversal learning as well switches between each discrimination dimension. Results revealed a mild and transient deficit on the operant task that was not specific to any stage of the procedure. In the water tank, the lesion animals were impaired on the reversal of a spatial discrimination but did not differ from controls on any other measure. Experiment 2 examined the impact of ATN damage on a rodent analogue of the ‘Stroop’, which assesses response choice during stimulus conflict. The lesion animals successfully acquired this task and were able to use contextual information to disambiguate conflicting cue information. However, responding during the initial presentation of conflicting cue information was affected by the lesion. Taken together, these results suggest that the ATN are not required for aspects of behavioural flexibility (discrimination learning, reversals or high-order switches) typically associated with the rat medial prefrontal cortex. The results from Experiment 2 suggest that the non-spatial functions of the ATN may be more aligned with those of the anterior cingulate cortex

    Collateral projections innervate the mammillary bodies and retrosplenial cortex: A new category of hippocampal cells

    Get PDF
    To understand the hippocampus it is necessary to understand the subiculum. Unlike other hippocampal subfields, the subiculum projects to almost all distal hippocampal targets, highlighting its critical importance for external networks. The present studies, in male rats and mice, reveal a new category of dorsal subiculum neurons that innervate both the mammillary bodies and the retrosplenial cortex. These bifurcating neurons comprise almost half of the hippocampal cells that project to retrosplenial cortex. The termination of these numerous collateral projections was visualized within the medial mammillary nucleus and the granular retrosplenial cortex (area 29). These collateral projections included subiculum efferents that cross to the contralateral mammillary bodies. Within the granular retrosplenial cortex, the collateral projections form a particularly dense plexus in deep layer II and layer III. This retrosplenial termination site co-localized with markers for VGluT2 and neurotensin. While efferents from the hippocampal CA fields standardly collateralize, subiculum projections often have only one target site. Consequently, the many collateral projections involving the retrosplenial cortex and the mammillary bodies present a relatively unusual pattern for the subiculum, which presumably relates to how both targets have complementary roles in spatial processing. Furthermore, along with the anterior thalamic nuclei, the mammillary bodies and retrosplenial cortex are key members of a memory circuit, which is usually described as both starting and finishing in the hippocampus. The present findings reveal how the hippocampus simultaneously engages different parts of this circuit, so forcing an important revision of this networ

    Perirhinal cortex lesions in rats: Novelty detection and sensitivity to interference

    Get PDF
    Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal

    Asymmetric cross-hemispheric connections link the rat anterior thalamic nuclei with the cortex and hippocampal formation

    Get PDF
    Dense reciprocal connections link the rat anterior thalamic nuclei with the prelimbic, anterior cingulate and retrosplenial cortices, as well as with the subiculum and postsubiculum. The present study compared the ipsilateral thalamic-cortical connections with the corresponding crossed, contralateral connections between these same sets of regions. All efferents from the anteromedial thalamic nucleus to the cortex, as well as those to the subiculum, remained ipsilateral. In contrast, all of these target sites provided reciprocal, bilateral projections to the anteromedial nucleus. While the anteroventral thalamic nucleus often shared this same asymmetric pattern of cortical connections, it received relatively fewer crossed inputs than the anteromedial nucleus. This difference was most marked for the anterior cingulate projections, as those to the anteroventral nucleus remained almost entirely ipsilateral. Unlike the anteromedial nucleus, the anteroventral nucleus also appeared to provide a restricted, crossed projection to the contralateral retrosplenial cortex. Meanwhile, the closely related laterodorsal thalamic nucleus had almost exclusively ipsilateral efferent and afferent cortical connections. Likewise, within the hippocampus, the postsubiculum seemingly had only ipsilateral efferent and afferent connections with the anterior thalamic and laterodorsal nuclei. While the bilateral cortical projections to the anterior thalamic nuclei originated predominantly from layer VI, the accompanying sparse projections from layer V largely gave rise to ipsilateral thalamic inputs. In testing a potentially unifying principle of anterior thalamic – cortical interactions, a slightly more individual pattern emerged that reinforces other evidence of functional differences within the anterior thalamic and also helps to explain the consequences of unilateral interventions involving these nuclei

    Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus

    Get PDF
    The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli
    • 

    corecore