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Summary 

Recognition memory is the ability to distinguish novel from familiar stimuli. This thesis 

explores opposing models of recognition memory that alternatively assume that the 

perirhinal cortex and hippocampus (regions of the medial temporal lobe) must 

functionally interact to support recognition memory or that the perirhinal cortex can 

support this process independently. Additionally, the way in which these areas 

differentially interact to support learning about novel compared to familiar stimuli was 

examined. 

To achieve this, rats with lesions to the hippocampus or perirhinal cortex were given 

tests of object recognition memory or allowed to explore novel stimuli, after which, 

regional neuronal activity and network interactions were explored. This was achieved by 

immediate-early gene imaging; the expression of c-fos was used as a marker of neuronal 

activity, allowing for the assessment of regional activity at an extremely high anatomical 

resolution. Network interactions were explored using structural equation modelling; a 

statistical technique that made it possible to test if the observed activity could be mapped 

on to known anatomical pathways. In this way, network dynamics supporting these 

behavioural tasks were explored. Thus, the functional interdependence of the 

hippocampus and perirhinal cortex was tested both when the brain was intact and 

following lesions. This was done at multiple levels; behaviourally, at the level of 

regional activation and at the level of systems interactions.  

The behavioural and network analyses from the lesion studies provide evidence for the 

functional independence of the perirhinal cortex and hippocampus. Parallel work in the 

intact rats provided evidence that, under normal circumstances, novel or familiar stimuli 

can define patterns of parahippocampal-hippocampal interactions. Specifically, novelty 

engaged lateral entorhinal cortical layers II and III to recruit CA3 (the perforant path) 

and subsequently CA1, while familiarity was associated with the more direct route from 

the lateral entorhinal cortex to CA1 (the temporoammonic pathway). 
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1. General Introduction 

1.1 Overview 

The research described in this thesis focuses on elucidating the neural networks that 

contribute to recognition memory in rodents, and further exposing the manner in which 

network dynamics are altered by exposure to novel or familiar stimuli. While we have 

learned a huge amount about the brain and its regional specialisation from traditional 

lesion studies, it is clear that no single region completes even the simplest cognitive task 

in isolation. Thus, the overarching aim of this work is to reconstruct functional networks 

of anatomically connected regions. Lesion experiments are interpreted in a novel way, 

by assessing their impact not only on the behaviour of the animals but also on the 

remaining components of these functional networks. 

Put simply, recognition memory is the ability to distinguish novel from familiar stimuli; 

this process involves stimulus identification along with a judgement of prior occurrence 

(Mandler, 1980) and as such it can be considered to be a component of declarative 

memory. This ubiquitous form of memory is shared by humans with other animals, 

making it an important target for neuroscientific investigation. It has many interesting 

features that make it a good model system for studying memory, particularly as 

components of recognition memory can be tested non-verbally in animals, something 

that is not possible for episodic memory, as this requires mental time-travel and 

introspection (Tulving, 1972). These are features that cannot be tested in animals. 

Recognition memory does, however, share characteristics with episodic memory. For 

example, it requires only a single exposure and so information can be retrieved 

following a single episode, it occurs quickly and exposures can be very short. There are 

several models that postulate how regions of the medal temporal lobe interact to support 

recognition memory and the main focus of this thesis will be to test aspects of these 

models.    

1.2 A brief history of behavioural testing for recognition memory 

The hippocampus was brought to the forefront of memory research in 1957 with the 

seminal paper by Scoville and Milner describing a patient, H.M., who, following the 

bilateral resection of his hippocampi and surrounding cortices, presented with dense 
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anterograde amnesia (Scoville and Milner, 1957). This, along with the discoveries of 

long-term potentiation in the dentate gyrus (Bliss & Lomo, 1973) and place cells in the 

hippocampal subfield, CA1 (O’Keefe & Dostrovsky, 1971), led to the influential notion 

that the hippocampus is central to mnemonic processing. A great deal of research has 

subsequently implicated the surrounding regions in forming subtly different forms of 

memories, including, memories of prior occurrence. Much of the memory-related 

research that followed H.M. was carried out in animal models. This necessitated the 

creation of appropriate tests of memory in animals that taxed the same 

neuropsychological mechanisms thought to support mnemonic processing in humans. 

This section will give a short history of recognition memory testing, beginning in 

humans and moving on to the development of similar tests for monkeys and then 

rodents, leading up to the paradigms commonly used today.  

1.2.1 Delayed matching/nonmatching to sample tasks  

Recognition memory has been tested in humans in a very simple manner for over 100 

years. This test is known as the delayed matching-to-sample paradigm.  In an example of 

these early tests of recognition memory, subjects were presented with a list of twenty 

words. Following a variable delay, they were given a second list of forty words; twenty 

from the list seen previously and twenty new words. This is a forced-choice paradigm as 

subjects were instructed to indicate 20 words they recognised as being from the original 

list, along with their degree of certainty, even if this involved guessing (Strange, 1913; 

Strange & Strange, 1916). 

One of the most important challenges in recognition memory research over the last 

century has been to create a behavioural test for animals that closely mimics how 

recognition memory is tested in humans. The first such test was an object based delayed 

matching-to-sample paradigm in rhesus monkeys (Gaffan, 1974). The following year the 

delayed nonmatching-to-sample (DNMS) paradigm was introduced by Mishkin and 

Delacour (1975).  The DNMS task (Figure 1.1A) is based on the discovery that by using 

a rewarded forced-choice procedure, monkeys can rapidly be trained to select a novel 

object in preference to a familiar object, thereby demonstrating recognition memory.  

Importantly, the DNMS task requires only a single exposure phase to familiarise the 

monkey with the initial sample stimulus, e.g., object A.  After a delay, the monkey is 

given a choice between the now familiar object A and novel object B.  Selection of 

object B is rewarded. In this way, the monkey is reinforced for applying a nonmatching 

rule to a familiar sample object after a retention delay, i.e., delayed nonmatching-to-
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sample.  The next trial involves a completely new pair of objects, e.g., sample object C 

and novel object D. Thus, a series of trials can be represented as A+ then A- vs. B+ (trial 

1); C+ then C-  vs. D+ (trial 2); E+ then E- vs. F+ (trial 3), and so on, where the object 

with a plus sign covers a food reward and the object with a negative sign is unrewarded  

(Figure 1.1A).  

 

Figure 1.1. Schemata of various tests of object recognition memory. 

(A) Delayed nonmatching-to-sample task designed for monkeys. (B) Running Recognition in Y-

maze; arrows show direction of rats movements. (C) Open field test of object recognition memory; 

none of the objects are associated with a food reward. (D) Shuttle box test; two sliding doors separate 

the central holding area from the sample and test regions at the ends of the maze. (E) E-maze; S 

denotes the start arm. Configuration of sample and test phases for both familiarity and recall are as 

shown, upon completion of the sample phase the rat is placed in a holding cage with a copy of one of 

the objects from the sample phase for habituation. The animal is then returned to the maze; when the 

objects are placed on the backbone of the E-maze the rat can see them from the start arm and so can 

choose the non-habituated object based on familiarity processing whereas when the objects are placed 

in the outer arms they cannot be seen from the start arm and so must use recall processes to remember 

where the non-habituated object is located. + Objects associated with food reward. Bold letters 

represent novel objects. 

 

The DNMS task not only has clear parallels with forced-choice recognition tests given to 

humans but also permits multiple recognition problems within a single session.  As 

studies with monkeys inevitably rely on very small group sizes, the ability to give many 
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trials per session is an essential feature if the task is going to differentiate between neural 

manipulations. The DNMS protocol also proved to be highly versatile, as it can easily be 

given with varying retention intervals and altered interference between sample and 

recognition test (Mishkin, 1978). The task can also be given in the dark in order to test 

tactile recognition memory (Murray & Mishkin, 1985). By taking advantage of the 

monkey’s spontaneous preference for novelty over familiarity, the DNMS task is not 

only quick to train but reduces the likelihood that deficits arise because the nonmatching 

rule itself has been lost.  Furthermore, it proved relatively straightforward to test humans 

on both delayed matching-to-sample and delayed nonmatching-to-sample tasks that were 

deliberately modelled on DNMS tests given to monkeys.  Such experiments showed, for 

example, that anterograde amnesia is typically sensitive to this form of recognition test 

(Aggleton et al., 1988; Squire et al., 1988). 

The next step was to determine if rodents could also learn a DNMS task that involved a 

single sample exposure. In the first such experiment (Aggleton, 1985), rats ran in a Y-

shaped maze where they selected between objects using a ‘running recognition’ 

protocol. Consequently, the novel stimulus for one trial became the familiar stimulus for 

the subsequent trial.  In practice, the reinforced rule was to choose the arm with novel 

contents and avoid the arms with familiar contents (Figure 1.1B). As the nonmatching 

procedure was continuous, there was no discrete sample phase, apart from at the very 

start of the session (trial 0).  The task design can, therefore, be represented as  A+ (trial 

0),  A- vs. B+ (trial 1), B- vs. C+ (trial 2), D+ vs. C- (trial 3), E+ vs. D- (trial 4), and so 

on.  The continuous testing procedure makes it possible to give multiple trials per 

session without having to handle the rats. 

A later nonmatching task for rats (Mumby et al., 1990) included a separate sample phase 

at the start of each trial, so more closely following the DNMS procedures given to 

monkeys. The apparatus consisted of a shuttle box with a central holding area (Mumby 

et al., 1990; Figure 1.1D). To start each trial, the rat ran from the central holding area to 

the sample end to explore novel object A. This familiarisation phase was followed by a 

choice test at the opposite end of the shuttle box between the now familiar, object A and 

a novel alternative, object B. The rat was rewarded with food for selecting the novel 

object rather than the familiar sample object.  New sets of objects were used for each 

trial. Again, the rats were not handled during the test session and multiple trials could be 

given within each session (Mumby et al., 1990). 
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More recently these rodent DNMS tasks have been replaced by other, simpler methods. 

The problem is that rodent DNMS tasks involve considerable training.  Even then, some 

rats struggle to reach levels of performance that would be informative when trying to 

manipulate recognition memory. A related issue is that because task acquisition is 

demanding, it remains possible that neural interventions might affect performance by 

altering the ability to learn and apply the rule, rather than by affecting the ability to 

distinguish novel from familiar stimuli.  These tasks also depend on the use of food 

rewards, meaning changes in motivation might alter performance. Thus, a simpler test 

was required. 

1.2.2 Spontaneous object recognition 

The assessment of recognition memory in rodents was transformed by the introduction 

of spontaneous preference tests based on measurements of exploration.  This was based 

on work that began in the 1950’s. It was first demonstrated that rats reduce time spent 

exploring an object over subsequent presentations (Berlyne, 1950).  It was also shown in 

T-maze studies that rats prefer arms that have a changed appearance and so seem novel 

(Dember, 1956; Kivy et al., 1956).  Subsequently, it was demonstrated that hamsters will 

spend more time exploring an object that has moved to a novel position (Poucet et al., 

1986).  Utilising this preference for novelty, Ennaceur and Delacour (1988) showed that 

if rats are given sufficient time to explore two identical copies of object A in an open 

rectangular arena, they will typically spend more time exploring novel object B in 

preference to a duplicate of object A, when placed back in that same arena following a 

retention delay (Figure 1.1C). This simple, but powerful, protocol has led to countless 

experiments into the neural basis of recognition memory.  Spontaneous preference tasks 

are also very versatile and have been adapted to measure memory for object location 

(Poucet et al., 1986; Ennaceur et al., 1997) object-in-place information (Dix & Aggleton, 

1999), object-in-context conjunctions (Dix & Aggleton, 1999; Norman & Eacott, 2005), 

object reconfigurations (Ennaceur & Aggleton, 1994) and object recency (Mitchell & 

Laiacona, 1998), along with various combinations of these forms (Eacott & Norman, 

2004; Dere et al., 2005; Good et al., 2007; Langston & Wood, 2010). 

There are several advantages of the spontaneous object recognition task.  The 

spontaneous nature of the task rule makes the procedure simple to run; rodents require 

little pre-training except for habituation to the test arena.  Further, normal rats require 

only a single exposure to a sample object to display successful recognition memory.  

Additionally, food or water deprivation is not required and so the results should not be 
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sensitive to manipulations that affect motivation. As mentioned previously, the task is 

also very versatile, making it easy to alter task difficulty by altering the interval between 

sample and test.  The popularity of the spontaneous object recognition task is reflected in 

the fact that the initial paper by Ennaceur and Delacour (1988) has been cited over a 

thousand times (ISI, Web of Science).  It has also been estimated that approximately 

43,000 animals were used in this type of task or its close variants in the years 2007-2012 

(Ameen-Ali et al., 2012). 

Despite these procedural advantages, in order for a behavioural paradigm to be truly 

useful, construct validity must be demonstrated; i.e., that the task taxes the cognitive 

processes that are thought to support recognition memory and so relies on the same 

neural substrates.  For example, it could be argued that the spontaneous recognition test 

simply measures habituation to repeated stimuli, a form of implicit learning, and as such, 

is not comparable to the explicit tests of recognition memory given to humans. However, 

studies with rodents have shown that perirhinal lesions do not affect the decrease in 

exploration that occurs with repeated presentation of the same stimulus (i.e., 

habituation), while concurrently the lesions impair object recognition based on the 

preference between two objects presented simultaneously (Mumby et al., 2007; Albasser 

et al., 2009; 2011b). 

It is possible to examine if spontaneous tests of recognition memory involve similar 

neural structures to those required for forced-choice tests of recognition. One source of 

evidence comes from comparing the outcome of DNMS experiments with those using 

spontaneous object preference tasks.  Taking the example of brain lesions in rats, it can 

be seen that perirhinal cortex lesions impair object recognition whether tested using 

spontaneous tasks (Aggleton et al., 1997; Winters et al., 2008; Aggleton et al., 2010) or 

DNMS procedures (Mumby & Pinel, 1994). Similarly, perirhinal lesions in monkeys 

disrupt both DNMS and visual-paired comparison tasks, which compare the times spent 

looking at novel and familiar stimuli (Nemanic et al., 2004). Further, lesions in sites 

such as the fornix, medial prefrontal cortex, and mammillary bodies spare object 

recognition in rats whether tested using nonmatching-to-sample (Aggleton et al., 1990; 

Shaw & Aggleton, 1990) or spontaneous preference tests (Ennaceur & Aggleton, 1994; 

Aggleton et al., 1995; Ennaceur et al., 1996, 1997; Barker at al., 2007). Comparisons 

between the consequences of hippocampal lesions in rats are more difficult to interpret 

as the majority of both spontaneous and reinforced nonmatching studies describe sparing 

of recognition memory, while some studies report deficits (Aggleton et al., 1986; 
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Mumby et al., 1992; Clark et al., 2000; Mumby et al., 2001; Forwood et al., 2005; Ainge 

et al., 2006; Winters et al., 2008; Broadbent et al., 2010; Barker & Warburton, 2011b). 

There is, however, evidence from a study in monkeys that hippocampal lesions cause 

profound deficits in the visual paired comparison task while sparing performance in a 

DNMS task, except under the most difficult test conditions, suggesting that these task do 

not tax the same neural processes (Nemanic et al., 2004). A similar result was also seen 

in humans (Pascalis et al., 2004). These results will be discussed more extensively in the 

next section, but taken overall, spontaneous preference tests of recognition memory for 

rodents give comparable results to those found with reinforced nonmatching procedures. 

1.3 Neural basis of recognition memory 

This section will further discuss insights into the neural substrates of recognition 

memory obtained from spontaneous object recognition tasks along with several other 

informative paradigms in both primates and rodents. First, however, a description of the 

neuroanatomy relevant to the following arguments will be given. 

1.3.1 Anatomy of the rodent medial temporal lobe 

Despite debate over the specific functions of component parts of the medial temporal 

lobe there is consensus that this region is highly important for memory, notably 

recognition memory (Brown & Aggleton, 2001; Eichenbaum et al., 2007; Wixted & 

Squire, 2011; Ranganath & Ritchey, 2014). Consequently, an understanding of the 

underlying anatomy and connections of this region is particularly important when trying 

to interpret the results of lesion and electrophysiological studies. The rodent medial 

temporal lobe includes the hippocampal formation and the adjacent rhinal cortices 

(Figure 1.2). The hippocampal formation can be divided into the hippocampus proper 

and the subicular cortices. The hippocampus proper comprises the CA fields 1-3 and the 

dentate gyrus. The subicular cortices can also be further subdivided into the subiculum, 

presubiculum, parasubiculum and postsubiculum (Figure 1.2; Aggleton, 2012). The 

rodent rhinal cortices are divided into areas 35 and 36, composite parts of the  perirhinal 

cortex (PRH), postrhinal cortex (POR), lateral entorhinal cortex (LEC) and medial 

entorhinal cortex (MEC) (Figure 1.2; van Strien et al., 2009). These various regions can 

be differentiated based on their laminar structure; the dentate gyrus, CA1-3 and the 

subiculum are formed of three layers, while the pre-, para- and postsubiculum and the 

rhinal cortices have six layers (Amaral & Lavenex, 2007).  In the rodent, the cortical 

regions listed above can be collectively referred to as the parahippocampal cortex. This 
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is noteworthy as in the primate brain the ‘parahippocampal cortex’ is a defined region in 

and of itself (areas TF, TH); it is homologue of the rodent postrhinal cortex (Aggleton, 

2012).  

In simplified terms, the anatomical connections in this region can be thought of as 

following two streams, although these are by no means completely segregated (Figure 

1.3; VanStrien et al., 2009). The postrhinal and perirhinal have differences in the origin 

of their afferents but can generally be thought of as receiving inputs from unimodal and 

polymodal association areas (Burwell & Amaral, 1998a,b). The perirhinal cortex is 

densely reciprocally connected with the lateral entorhinal cortex, while the medial 

entorhinal cortex has stronger connections with the postrhinal cortex (Naber et al., 1997; 

Burwell & Amaral, 1998a,b). The medial and lateral entorhinal cortices then, in turn, 

provide the main hippocampal afferent connections (Amaral, 1993; Witter, 1993). 

The perirhinal cortex is important to many of the arguments that follow. Together with 

the postrhinal cortex, it can be viewed as one of the input regions of this system and so a 

detailed description of their connections beyond the parahippocampal region is given. 

The perirhinal cortex lines the banks of the posterior third of the rhinal sulcus (Figure 

1.2). Rostral to it lies the insular cortex and it begins where the claustrum ends. It is 

bound dorsally by the ventral temporal association area (also known as TE/Te2/Tev), 

ventrally by the lateral entorhinal cortex and caudally by the both the lateral entorhinal 

and postrhinal cortices (Burwell, 2001). It consists of two cytoarchitecturally distinct 

regions; the dorsal area 36 and ventral area 35 (Figure 1.2), each having different 

efferent and afferent patterns of connectivity (Burwell and Amaral, 1998a,b; Burwell, 

2001; Furtak et al., 2007). 
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Figure 1.2. Depiction of the hippocampal formation and parahippocampal region 

in the rat brain. 

Part A: Lateral (left panel) and caudal (right panel) views. For orientation in the hippocampal 

formation (consisting of the dentate gyrus (DG; dark brown), CA3 (medium brown), CA2 (not 

indicated), CA1 (orange) and the subiculum (Sub; yellow), three axes are indicated: the long or 

septotemporal axis (also referred to as the dorsoventral axis); the transverse or proximodistal axis, 

which runs parallel to the cell layer and starts at the DG; and the radial or superficial-to-deep axis, 

which is defined as being perpendicular to the transverse axis. In the parahippocampal region (green, 

blue, pink and purple shaded areas), a similar superficial-to-deep axis is used. Additionally, the 

presubiculum (PrS; medium blue) and parasubiculum (PaS; dark blue) are described by a 

septotemporal and proximodistal axis. The entorhinal cortex, which has a lateral (LEA; dark green) 

and a medial (MEA; light green) aspect, is described by a dorsolateral-to-ventromedial gradient and a 

rostrocaudal axis. The perirhinal cortex (consisting of Brodmann areas (A) 35 (pink) and 36 (purple)) 

and the postrhinal cortex (POR; blue-green) share the latter axis with the entorhinal cortex and are 

additionally defined by a dorsoventral orientation. The dashed lines in the left panel indicate the levels 

of two horizontal sections (a,b) and two coronal sections (c,d), which are shown in part B. Part C: A 

Nissl-stained horizontal cross section (enlarged from part Bb) in which the cortical layers and three-

dimensional axes are marked. The Roman numerals indicate cortical layers. CA, cornu ammonis; dist, 

distal; dl, dorsolateral part of the entorhinal cortex; encl, enclosed blade of the DG; exp, exposed 

blade of the DG; gl, granule cell layer; luc, stratum lucidum; ml, molecular layer; or, stratum oriens; 

prox, proximal; pyr, pyramidal cell layer; rad, stratum radiatum; slm, stratum lacunosum-moleculare; 

vm, ventromedial part of the entorhinal cortex. Reproduced from VanStrien et al. (2009). 
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Area 36 receives over half of its inputs from surrounding temporal regions such as the 

ventral temporal association cortex; it also receives projections from the insular cortex, 

visual association regions of the occipital cortex as well as frontal and parietal 

multimodal areas, but these are somewhat less dense than the temporal connections. The 

main inputs into area 35 are from the piriform and insular cortices with less numerous 

projections from olfactory regions, temporal, parietal and frontal association areas. 

Additionally, both areas are reciprocally connected to the amygdala, (Burwell and 

Amaral, 1998b; Furtak et al., 2007). The extrinsic cortical efferent connections of areas 

35 and 36 generally follow the pattern of their afferent connections. Area 35 sends a 

dense projection to the insula while the most numerous projection from area 36 is to the 

ventral temporal association area. They also both send efferents to frontal temporal and 

parietal association areas, including the secondary somatisensory cortex (Agster & 

Burwell, 2009). The postrhinal cortex receives a high proportion of its inputs from visual 

areas in the occipital cortex, mainly from association areas but to a lesser extent from 

primary visual cortex. It also receives inputs from visuospatial areas, including posterior 

parietal and ventral temporal cortex as well as the retrosplenial cortex (Burwell and 

Amaral, 1998b; Furtak et al., 2007). The majority of postrhinal connections are highly 

reciprocal; thus the densest output is to the visual association areas in the occipital 

cortex with other strong projections to ventral temporal cortex, posterior parietal cortex 

and cingulate cortex (Agster & Burwell, 2009). On the whole, the perirhinal cortex 

receives multimodal sensory related inputs and as such has been described as “the locus 

of a convergence of perceptual information”, while the majority of regions that the 

postrhinal cortex is connected to are related to visual processing (Furtak et al., 2007; 

Burwell & Agster, 2008).  

Area 36 is more heavily reciprocally connected with the postrhinal cortex than is area 35 

(Burwell & Amaral, 1998a). The connections between the perirhinal cortex and lateral 

entorhinal cortex follow a ventral to dorsal gradient, which gives them a degree of 

directionality. The strongest projections are from area 36 to area 35 and from area 35 to 

lateral entorhinal cortex. The projections to lateral entorhinal cortex originate 

predominantly in layers III and V of area 35 (although area 36 does send a weaker 

projection) and converge on layers II and III of the lateral entorhinal cortex (Figure 1.3; 

Burwell & Amaral, 1998a; Kerr et al., 2007). Area 35 receives relatively strong 

projections back from the lateral entorhinal cortex while area 36 receives a much weaker 

back projection; both originating predominantly in cortical layers III and V of the lateral 

entorhinal cortex.  Both of these connections are less numerous than the reciprocal ones 
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into the lateral entorhinal cortex (Burwell & Amaral, 1998b). Additionally, a small 

proportion of the cortical input to both area 35 and 36 arises in the medial entorhinal 

cortex (Burwell & Amaral, 1998b). Both areas 35 and 36 have a reciprocal connection 

with CA1 and to a lesser extent, with the subiculum (Furtak et al., 2007).  

The postrhinal cortex is predominantly connected to the medial entorhinal cortex (Figure 

1.3), although it does have a lighter connection with lateral entorhinal cortex (Naber et 

al., 1997; Burwell & Amaral, 1998a). These projections originate in cortical layers II, III 

and V and converge on layers II and III of the entorhinal cortex (Burwell & Amaral, 

1998a; Furtak et al., 2007; Kerr et al., 2007). The postrhinal cortex also has modest 

connections with the septal region of CA1 (Furtak et al., 2007). Additionally, there are 

dense reciprocal connections between areas of the entorhinal cortex. In the medial area, 

neurons in cortical layers II, III, V and VI project to layers II and III of the lateral region. 

The return projections are slightly more complicated; cells in layers II and V of the 

lateral entorhinal cortex project to layers II and III of the medial entorhinal cortex while 

layers III and VI of the lateral region project across the depth of the medial entorhinal 

cortex (VanStrien et al., 2009).  

 

Figure 1.3. Simplified schematic of the prevailing connections of the medial 

temporal lobe. 

Abbreviations: CA = Cornu Ammonis; Dist = distal; DG = denate gyrus; LEC = lateral entorhinal 

cortex; MEC = medial entorhinal cortex; POR = postrhinal cortex; PRH = perirhinal cortex; Prox = 

proximal. For simplicity the schematic does not include the direct connections linking PRH (and 

POR) with CA1/subiculum. 

 

The hippocampus proper is traditionally thought of as being a unidirectional trisynaptic 

loop. This loop can be thought of as beginning with neurons in cortical layer II (although 

other layers contribute sparsely; VanStrien et al, 2009) of the both the medial and lateral 

entorhinal cortices; these axons travel in a projection known as the perforant pathway 
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and synapse with the granule cells of the dentate gyrus (Steward & Scoville, 1976; 

Amaral, 1993; Dolorfo & Amaral, 1998). These excitatory synapses follow a well-

defined organisation; axons from the lateral entorhinal cortex make contact with the 

outer third of the granule dendritic tree, while axons from the medial entorhinal cortex 

make contact with the middle third of the dendritic arbour. The granule cells of the 

dentate gyrus then project to CA3; these axons are known as mossy fibres. Mossy fibres 

make synaptic contact with proximal apical dendrites of the pyramidal cells in CA3 

which, in turn, send Schaffer collaterals to the pyramidal cells of the ipsilateral CA1.  In 

addition, CA3 neurons send commissural projections to the contralateral CA3 and CA1 

pyramidal cells.  To summarise, the canonical trisyanaptic loop can be represented as: 

entorhinal cortex → dentate gyrus (synapse 1), dentate gyrus → CA3 (synapse 2), CA3 

→ CA1 (synapse 3) (Amaral & Lavenex, 2007; Burwell & Agster, 2008). These 

connections have a well-defined topography across the transverse axis of the 

hippocampus, which is defined in relation to the dentate gyrus. In this dimension, non-

adjacent regions are more densely connected. That is, neurons in the proximal region 

(closer to dentate gyrus) of CA3 project to the distal region of CA1 while distal CA3 

cells project to proximal CA1 (Amaral, 1993; VanStrien et al., 2009). 

To complete the picture, there are additional pathways to be included that are not set out 

in this conventional trisynaptic view. These include the temporoammonic pathway 

which carries axons that originate in cortical layer III of the entorhinal cortex and 

terminate bilaterally on distal apical dendrites of CA1 pyramidal neurons (Steward & 

Scoville, 1976; Amaral, 1993; Amaral & Lavenex, 2007).  An additional layer of 

complexity comes from the fact that the lateral entorhinal cortex has a stronger 

projection to distal CA1 and proximal subiculum (i.e. inputs terminate around the border 

between CA1 and subiculum) while MEC preferentially projects to proximal CA1 and 

distal subiculum (Amaral, 1993; Witter, 1993).  The projection from CA1 to the 

subiculum has a similar transverse topography, in that neurons in the proximal region of 

CA1 synapse on neurons in the distal regions of the subiculum and vice versa.  Together 

with the trisynaptic loop, these connections can be termed the polysynaptic pathway 

(VanStrien et al., 2009).  Further, it should be noted that while the predominant direction 

of connections is as described here, more modest back-projections have also been 

reported from CA3 back to the dentate gyrus, as well as from CA1 to CA3 (reviewed in 

VanStrien at al., 2009).  
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The main output from the hippocampal formation is from CA1 and subiculum to cortical 

layers V and VI of the entorhinal cortex (Tamamaki & Nojyo, 1995), although fibres can 

terminate sparsely in the more superficial layers (VanStrien et al., 2009). As is often the 

case, the efferents follow the same pattern as the afferents. Accordingly, the proximal 

region of CA1 and distal subiculum project to the medial entorhinal cortex while distal 

CA1 and proximal subiculum send return projections to the lateral entorhinal cortex 

(VanStrien et al., 2009).  

1.3.2 Recognition memory: Single vs. dual process models  

When we observe an item, we often instinctively know whether we have encountered 

that item before, i.e. if it is novel or familiar. Subjective experience indicates that this 

type of memory can come in two forms; remembering an item along with associated 

information, for example, when and where the item was last seen, or simply knowing an 

item has been experienced before.  This dichotomy is captured by ‘dual-process’ models 

of recognition memory. These two-process models typically assume the existence of 

familiarity-based as well as recollective-based recognition. Familiarity involves knowing 

an item has been encountered before, without any additional information. Recollection-

based recognition is thought to be more complex as it involves remembering associated 

contextual information related to the target object. Advocates of dual-process models 

assume that familiarity and recollection reflect independent neural processes (Yonelinas, 

2002). It has, however, been suggested that recognition memory is a unitary process 

(Squire et al., 2007; Wixted & Squire, 2011).  

A second, somewhat related debate, concerns the extent to which regions of the medial 

temporal lobe show functional heterogeneity; that is, do these regions make different 

contributions to recognition memory (Squire, 2004; Brown & Aggleton, 2001; Aggleton, 

2012). Proponents of dual-process models of recognition memory often argue that 

recollection and familiarity have distinct neural substrates (Brown & Aggleton, 2001; 

Yonelinas, 2002). In contrast, there are those that suggest that functional distinctions 

cannot be made between the contributions of regions of the medial temporal lobe to 

recognition memory (Squire et al., 2007; Wixted & Squire, 2011). Several variations 

exist based on single or dual-process accounts of recognition memory. What follows is a 

more detailed description of two influential models; the first supporting a dual-process 

and the second, a single-process account of recognition memory.   
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1.3.2.1 Multiple anatomical systems within the medial temporal lobe  

The “extended hippocampal system” is postulated to support episodic memory. This 

system was initially proposed by Aggleton and Brown (1999) and is composed of the 

fornix, mammillary bodies, and anterior thalamic nuclei, in addition to the hippocampus 

(Aggleton & Brown, 1999). Later, the retrosplenial cortex was also included (Aggleton 

& Brown, 2006). This model proposes that the different regions within the temporal lobe 

are functionally heterogeneous and so make dissociable contributions to memory and, 

further, that under certain circumstances regions can function independently. This is 

based on experimental dissociations from lesion studies in rodent and non-human 

primates, as well as variable deficits seen in amnesic patients with damage centred on 

different regions within the medial temporal lobe (Aggleton & Brown, 1999; Brown & 

Aggleton, 2001). Aggleton & Brown further suppose that recognition memory is 

composed of two distinct neural processes; recollection and familiarity. In this view, 

recollection is related to episodic memory and so is supported by this extended 

hippocampal system, while familiarity is assumed to be an independent process 

predominantly maintained by the perirhinal cortex. Thus, this model is consistent with 

dual-process views of recognition memory (Aggleton & Brown, 1999; Brown & 

Aggleton, 2001; Aggleton & Brown, 2006). Hippocampal damage would be predicted to 

affect recognition memory for episodes (Brown & Aggleton, 2001). 

More recently, this idea of the extended hippocampal system was further expanded. In a 

detailed review of the current anatomical data of both intrinsic and extrinsic connections 

of the medial temporal lobe, Aggleton (2012) suggests that there are in fact four 

dissociable systems residing within the medial temporal lobe, each supporting diverse 

mnemonic functions.  In addition to the extended-hippocampal system these are; the 

parahippocampal–prefrontal system for familiarity-based recognition and retrieval 

processing, the rostral hippocampal system for affective and social learning and the 

reciprocal hippocampal–parahippocampal system for sensory information and 

integration (Aggleton, 2012). These networks are not presumed to be mutually 

exclusive, but it is proposed that they have the capacity to function independently.  

The parahippocampal–prefrontal network (Figure 1.4) is concerned with discriminating 

both the familiarity and recency of occurrence of objects. The system is centred on the 

perirhinal cortex and its connections with surrounding cortical regions (TE and LEC) as 

well as the medial prefrontal cortex and medial dorsal nucleus of the thalamus 

(Aggleton, 2012).  
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Figure 1.4. The parahippocampal–prefrontal system for familiarity. 

The left side of the figure shows the main connections comprising the parahippocampal–prefrontal 

system. For purposes of contrast, the respective connections of the hippocampus (CA1, subiculum) 

are shown on the right. Abbreviations: MDmc, magnocellular part of the medial dorsal nucleus of the 

thalamus; Post Cing, posterior cingulate region. All other numbers and letters refer to cortical area 

designations. Adapted from Aggleton, 2012. 

1.3.2.2 The medial temporal memory system 

Squire and Zola-Morgan (1991) proposed “the medial temporal memory system”, a 

model in which the hippocampus resides at the apex of a hierarchical structure and 

information is supplied to it by the perirhinal cortex and parahippocampal cortex, via the 

entorhinal cortex (Figure 1.5; Squire & Zola-Morgan, 1991). In contrast to Aggleton and 

Brown’s model, mnemonic functions of the medial temporal lobe are seen to be more 

functionally distributed. The component regions are presumed to operate in concert to 

support memory in general and cannot be dissociated based on their contributions to 

differing memory processes. More severe memory deficits are predicted based on the 

size of the lesion rather than which components parts are damaged (Squire & Zola-

Morgan, 1991). As such, recognition memory is supposed to be a unitary process and the 

perceived distinction between recall and familiarity is simply that, perceived. In this 

view, recognition memory varies simply on a scale of strength. Furthermore, 

hippocampal activity is proposed to be associated with encoding and retrieval of strong 

memories, whether contextual information about the learning experience is remembered 

or not (Squire at al., 2007). Indeed, this model also supposes that weak recollective 

processes can occur in the absence of the hippocampus (Wais et al., 2006; Squire at al., 

2007). Thus, this single process account of recognition memory predicts that damage to 

these regions leads to equivalent deficits in recollection and familiarity (Squire at al., 

2004, 2007).  
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Figure 1.5. A schematic view of the medial temporal lobe memory system. 

Abbreviations: CA1, CA3, the CA fields of the hippocampus; DG, dentate gyrus; S, subicular 

complex. Adapted from Squire et al., 2004. 

 

Elaborations on the original model propose that the assumption that recollection leads to 

high confidence, high accuracy judgements, while familiarity leads to low confidence, 

low accuracy decisions is incorrect. More specifically, it is hypothesised that judgements 

of prior occurrence that are not associated with contextual information can be done so 

with high confidence and additionally that contextual retrieval can be associated with 

low confidence memories (Squire at al., 2007; Wixted & Squire, 2011). It is 

acknowledged that the perirhinal cortex and hippocampus make subtly different 

contribution to memory but these are proposed to be based on the attributes of the 

memory. The perirhinal cortex is described as responding primarily to visual attributes 

or stimulus identity (with the possibility that other sensory modalities can be bound to 

these visual representations). Hippocampal activity is proposed to be associated with 

encoding based on multiple stimulus attributes, for example; visual, spatial, tactile and 

temporal attributes (Wixted & Squire, 2011).  This model cannot, however, account for 

dissociations that have been demonstrated between recollection and familiarity for the 

hippocampus and perirhinal cortex.  

From these differing accounts of recognition memory, it is clear that debate continues 

over the relationship of these putative mnemonic processes and their anatomical 

substrates; whether recognition memory is underpinned by complementary interactions 

between relatively specialized regions or, alternatively, is distributed throughout a 

functionally homogenous medial temporal lobe. The following sections will discuss 

experimental evidence for these theories. 
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1.3.4 Perirhinal lesion studies 

Support for perirhinal based familiarity detection comes from several experimental 

paradigms. Earlier experiments involved visual delayed nonmatch (or match) to sample 

studies of monkeys with lesions of the rhinal cortices. They concluded that an intact 

perirhinal cortex is a requirement for successful recognition memory of infrequently 

encountered single objects (Zola-Morgan et al., 1989; Gaffan & Murray, 1992; Suzuki et 

al., 1993; Meunier et al., 1993; Eacott et a., 1994). Similar results have been reported for 

olfactory and tactile recognition memory, implicating the perirhinal cortex in recognition 

memory for several modalities (Suzuki et al., 1993). Impairments in the DNMS task 

following perirhinal lesions were replicated in the rat (Mumby & Pinel, 1994) and were 

extended to show that perirhinal lesions also impair recognition memory in rats when 

tested on the spontaneous object recognition paradigm (Ennaceur et al., 1996; Aggleton 

et al, 1997; Ennaceur & Aggleton, 1997; O’Brien et al., 2006; Albasser et al., 2009).   

Additionally, temporary inactivation of the perirhinal cortex, using the sodium channel 

blocker, lidocaine, implicated the perirhinal cortex in encoding, consolidation and 

retrieval of object recognition memories (Winters & Bussey, 2005; for review see 

Winters et al., 2008). 

1.3.5 Hippocampal lesion studies 

Early studies tested monkeys on the visual DNMS paradigm following combined lesions 

to the hippocampus and amygdala, and found deficits (Mishkin, 1978; Murray & 

Mishkin, 1986). However, based on the observation that aspiration lesions of the 

amygdala damaged projection fibres originating in the rhinal cortices and area TE 

(Goulet et al., 1998) this result was investigated further. Combined hippocampal-

amygdala lesions created with a neurotoxin, rather than by aspiration (to spare the 

adjacent cortex) dissipated the previously observed DNMS impairment (Murray & 

Mishkin, 1998).  Murray and Mishkin concluded that the deficits seen in their earlier 

experiments were due to inadvertent damage to the perirhinal cortex caused by the 

aspiration lesion technique (Murray & Mishkin, 1998). Indeed, this study actually 

reported a negative correlation between the extent of hippocampal damage and 

recognition memory impairment (Murray & Mishkin, 1998). This result was extended 

by a meta-analysis of three experiments on the effects of hippocampal lesions on the 

DNMS task in monkeys. This meta-analysis concluded that greater impairments in 
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DNMS were associated with smaller hippocampal lesions (Baxter & Murray, 2001); 

although this result is disputed on methodological grounds by Zola & Squire (2001).  

Deficits in visual recognition memory following hippocampal lesion have been reported 

although often the impairments were mild and evident only at longer retention delays 

(Zola-Morgan et al., 1992; Alvarez et al., 1995; Beason-Held et al., 1999; Zola et al., 

2000; Nemanic et al., 2004). Indeed, there are studies that simultaneously reported a 

DNMS deficit in monkeys with hippocampal lesions that was significantly exacerbated 

by perirhinal lesions (Zola-Morgan et al., 1993, 1994; Nemanic et al., 2004). Further, 

fornix transection in monkeys caused deficits in delayed match (or nonmatch) to sample 

that were minor in comparison to cases in which the surrounding cortex was damaged 

(Bachevalier et al., 1985, Gaffan, 1994). Although caution must be taken when 

interpreting these fornix related results, as some deficits due to fornix lesions can be 

dissociated from the effects of hippocampal lesions (Clarke et al., 2000). 

A similar pattern of results is seen in rodent tests of recognition memory; many studies 

have reported no effect of hippocampal lesions on various behavioural paradigms that 

test this form of memory (Aggleton et al., 1986; Rothblat & Kromer, 1991; Jackson-

Smith et al., 1993; Kesner et al., 1993; Rawlins et al., 1993; Steele and Rawlins, 1993; 

Mumby et al., 1995, 1996; Glenn & Mumby, 1996; Duva et al., 1997; Cassaday & 

Rawlins, 1997; Winters et al., 2004; Forwood et al., 2005; Ainge et al., 2006; Langston 

& Wood, 2010; Barker & Warburton, 2011b; Albasser et al., 2012). However, there are 

also reports of hippocampal lesion induced deficits in rodents (Mumby et al., 1992; 

Clark et al., 2000; Gaskin et al., 2003; Broadbent et al., 2004, 2010; Hammond et al., 

2004; Prusky et al., 2004; de Lima et al., 2006; Rossato et al., 2007; Cohen et al., 2013).  

As was the case with the non-human primate studies, when hippocampal damage 

disrupted rodent object recognition, this deficit was often minimal. For example, 

Mumby et al., (1992) reported a deficit in DNMS at the longest delay tested when rats 

with hippocampal lesions were compared to controls. However, as Mumby (2001) 

explained in a review that followed, the rats with lesions were not impaired when 

compared to their own pre-surgery scores for the same time point. The deficit was 

actually due to an increase in performance of the control group compared to their own 

pre-surgery scores (Mumby, 2001). Further, a single study demonstrated that the 

recognition memory deficit following hippocampal lesions is much less severe than the 

deficit caused by perirhinal lesions (Prusky et al., 2004). Temporary inactivation of the 

hippocampus in both mice and rats reduced spontaneous preference for novelty but 
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discrimination remained above chance levels (Hammond et al., 2004; de Lima et al., 

2006). Protein synthesis inhibition in dorsal CA1 did not affect successful novel object 

preference at three hours but prevented it at 24 hours (Rossato et al., 2007).  

These variable hippocampal lesion results could indicate that under normal 

circumstances the hippocampus and parahippocampal cortex cooperate to support 

recognition memory but the perirhinal cortex can do this in isolation if necessary. 

Nevertheless, a consensus has not been reached.  

1.3.6 Dissociations and double dissociation studies 

The lesion evidence discussed thus far suggests that the perirhinal cortex and 

hippocampus do not contribute equally to recognition memory. However, this inference 

is based on different cohorts of animals with lesions of varying sizes produced by 

different methods in rats that may or may not have received pre-surgery training. 

Additionally, various behavioural paradigms have been employed. These 

methodological variations are addressed by studies that demonstrate a behavioural 

dissociation; that is sparing in one task with a simultaneous deficit in another task 

following a lesion.  Several studies have reported that hippocampal lesions cause deficits 

in spatial memory tasks while leaving recognition memory unaffected (Aggleton et al., 

1986; Jackson-Smith et al., 1993; Duva et al., 1997). Indeed, rats with hippocampal 

lesions were shown to be impaired on a spatial nonmatching-to-place task both before 

and after demonstrating intact object recognition memory, verifying that the spared 

behaviour was not due to functional recovery in the time since the first spatial test 

(Forwood et al., 2005). There is also evidence for the complementary behavioural 

pattern; i.e., that perirhinal lesions impair object recognition but spare spatial memory 

(Aggleton et al., 1997; Bussey et al., 1999). 

Another informative class of studies involve functional dissociations; demonstrating that 

lesions in different region have opposing effects on the same behavioural task. Rats with 

hippocampal lesions took significantly longer than control rats and those with perirhinal 

lesions to find the target platform in a delayed matching-to-place task, while the 

perirhinal rats were no different to the sham controls, (Glenn & Mumby, 1998). Further, 

there are studies that have shown lesions to the perirhinal cortex impair object 

recognition memory but spare spatial tasks, while fornix lesions have the opposite 

effects (Ennaceur et al., 1996; Ennaceur & Aggleton, 1997; Bussey et al., 2000). 

However, as mentioned above, the effects of hippocampal and fornix lesions can be 
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dissociated (Clark et al., 2000) and so the most convincing evidence comes from a study 

that demonstrated a double dissociation within the same experiment.  

Winters et al. (2004) found a clear double dissociation between lesion groups. Rats with 

hippocampal lesions were impaired relative to both sham controls and rats with rhinal 

lesions when tested in the radial arm maze, while the rats with perirhinal lesions did not 

differ from the controls. The same rats with perirhinal lesions were impaired on 

spontaneous object recognition tested in the Y-maze relative to sham controls, while 

those with hippocampal lesions were not (Winters et al., 2004). Additionally, monkeys 

with hippocampal or perirhinal lesions were impaired on an object-in-place variation of 

the visual-paired comparison task, while only those with perirhinal lesions were 

impaired on the novel item version of the task (Bachevalier & Nemanic, 2008).  

It should be noted that there are studies that have reported impairments in spatial 

memory tasks following perirhinal lesions (Wiig & Bilkey, 1994a,b; Liu & Bilkey, 

1998a,b, 2001). However, a detailed review of the mnemonic consequences of perirhinal 

lesions on spatial tasks concluded that in the cases in which deficits were observed, they 

were minor in comparison to the effects of hippocampal or fornix lesions (Aggleton et 

al., 2004). For example, Liu and Bilkey (2001) demonstrated in a single study that 

hippocampal lesions severely impaired performance in all tasks in a spatial battery, 

while perirhinal lesions had much more restricted effects in spatial working memory 

tested at longer delays (Liu & Bilkey, 2001). 

Disconnection analyses have also generated pertinent results. These experiments 

involved lesions to the perirhinal cortex in one hemisphere with hippocampal lesions in 

the ipsilateral or contralateral hemisphere (Barker & Warburton, 2011). This allows for 

the assessment of functional circuits. If a connection is required between these regions to 

support a task, the deficit will be worse in rats that received contralateral rather than 

ipsilateral lesions, as the circuit is disrupted in both hemispheres as opposed to just one 

(Warburton & Brown, 2010). It has been found that a functional connection between the 

perirhinal cortex and the hippocampus was not required for object recognition memory 

but was necessary for successful object-in-place memory, object recency memory and 

object paired associate learning (Jo & Lee, 2010; Barker & Warburton, 2011). These are 

examples of associative recognition, which refers to when the individual components are 

familiar but their altered location or element re-combination creates a novel 

configuration (Mayes et al., 2007; Barker & Warburton, 2011). It should be noted that 

there is a hippocampal lesion study that reported spared object-place and object-context 
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associations but found deficits in the three-way association between object, place and 

context. Thus, although the results are somewhat inconsistent, they still highlight a 

specific role for the hippocampus in associative memory (Langston & Wood, 2010).  

Taken together, the lesion evidence suggests that although the hippocampus may have 

some involvement in the memory of prior occurrence, the perirhinal cortex has a more 

pivotal role; such dissociations would not be possible if the medial temporal lobe 

processed these types of memories in a functionally homogenous manner. These 

functional dissociations can only be possible if components of the network make 

separate contributions to recognition memory, supporting dual-process views. However, 

the precise nature of the hippocampal contribution is still to be elucidated. 

1.3.7 Neuronal recording studies 

Further evidence for the role of the perirhinal cortex in familiarity comes from 

electrophysiological studies. Neuronal recordings in monkeys have found different 

neuronal firing patterns based on the relative familiarity, recency or novelty of a 

presented stimulus (Fahy et al., 1993; Xiang & Brown, 1998). One such study involved 

a serial recognition task. Conscious monkeys were presented with a series of images; for 

each image they had to indicate if it had been previously encountered (Xiang & Brown, 

1998). The neuronal responses to these images were recorded in area TE, the perirhinal 

cortex, entorhinal cortex and the hippocampus. The vast majority of neurons that 

displayed differential firing patterns based on the relative familiarity or recency of an 

image did so by repetition suppression; the neurons were highly active when they first 

encountered a stimulus but subsequent presentations elicited an attenuated response.  

Based on their firing patterns, the differentially responsive neurons in the perirhinal 

cortex were sub-divided into three distinct categories (Figure 1.6). ‘Novelty neurons’ are 

highly active when initially exposed to a stimulus but rapidly diminish their activity 

upon a second exposure to that stimulus (Figure 1.6). ‘Novelty neurons’ will also 

respond to very familiar items that have not been encountered recently but this response 

is much shorter. ‘Familiarity neurons’ require more time for the response decrement to 

be observed; the magnitude of their response is no different between first and second 

presentations of a new stimulus. However, if the stimulus is highly familiar, activity 

levels of ‘familiarity neurons’ fall and this reduction is maintained over multiple 

presentations of the stimulus, regardless of how recently it was last seen (Figure 1.6).  

‘Recency neurons’ also reduce their activity quickly upon a second exposure to an item 
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but this occurs in the same manner for both novel as well as highly familiar items that 

have not been encountered recently (Figure 1.6).  

 

 

Figure 1.6. Three patterns of response decrements in the perirhianl cortex upon 

stimulus repetition. 

Patterns of responsiveness for idealised recency, familiarity and novelty neurones (bars representing 

the magnitude and duration of responses to first and repeat presentations of novel and familiar 

stimuli). Adapted from Brown & Xiang, 1998. 

 

Interestingly, in the cortical areas examined, over a third of the visually responsive 

neurons displayed differential firing patterns based on the relative familiarity or recency 

of the image (Xiang & Brown, 1998). This repetition suppression effect is strongest 

when the interval between first and subsequent presentations is short and familiar stimuli 

are presented frequently. It was calculated in a review paper that in the perirhinal cortex 

under these optimal conditions, approximately half of the visually responsive neurons, 

that is a quarter of the total number of recorded neurons, demonstrated this repetition 

suppression effect (Brown & Xiang, 1998). The same group obtained similar results 

concerning ‘recency’ and ‘familiarly neurons’ from single unit recordings in the 

perirhinal cortex of the rat (Zhu et al., 1995a). A recent study demonstrated similar 

response decrement effects to familiar images in monkey TE (Meyer et al., 2014).  
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It is striking that this response decrement can occur after a single presentation of a 

stimulus as it represents a tangible relationship between rapid learning and the activity of 

a single neuron (Brown & Xiang, 1998) and importantly, the responses are stimulus 

bound (Brown et al., 1987; Xiang & Brown; 1998; Naya et al., 2003).  Also, at the 

population level, these described neuronal responses took place rapidly. In the perirhinal 

cortex, response followed stimulus presentation by only 75 - 135 ms depending on the 

class of neuron (novelty neurons being fastest; Xiang & Brown; 1998). There was also 

evidence of long-term storage of visual information. Familiarity neurons in the 

perirhinal cortex were found that maintained a differential response to stimuli for more 

than 24 hours and this response was stable despite the presentation of many intervening 

stimuli (Fahy et al., 1993; Xiang & Brown, 1998). Finally, these responses occur 

automatically, whether the stimuli have behavioural relevance or not and do not require 

training (Fahy et al., 1993; Brown & Xiang, 1998; Xiang & Brown, 1998). All of these 

features make the perirhinal cortex an ideal candidate for being the neural substrate of 

familiarity processing (Brown & Aggleton, 2001; Brown et al., 2010).  

More recent unit recording studies have employed spontaneous object exploration 

paradigms. In these studies, neuronal recordings were made in freely moving rats while 

they explored objects in an open field (Deshmukh et al., 2012). Perirhinal units 

increased firing only in relation to objects. Although not calculated in the paper, the rate 

maps indicated that greater activity was seen when novel objects were added to the arena 

(Deshmukh et al., 2012). A similar study involved allowing rats to freely explore objects 

on a circular track (Burke et al., 2012). Again, perirhinal neurons increased their firing 

rate when in close proximity to objects (Burke et al., 2012). It should be noted that the 

repetition dependent response decrement of neuronal activity due to familiar stimuli was 

not observed (Burke et al., 2012). However, Burke et al., (2012) excluded interneurons 

from their analyses, while another study has suggested that the repetition suppression 

effect is exhibited specifically by inhibitory interneurons rather than excitatory neurons 

of the inferior temporal cortex (Woloszyn & Sheinberg, 2012).  

A recent single unit recording study in rats suggested that rather than signalling stimulus 

identity, perirhinal units encode stimulus-outcome associations (Ahn & Lee, 2015). 

However, this was based on highly familiar stimuli that were only encountered in 

association with a response rule (Ahn & Lee, 2015). It has been shown in monkeys that 

some units in area 36 of the perirhinal cortex encode stimulus associations but only after 

they have encoded the stimulus itself; indeed, less than half of the stimulus specific 
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neurons went on to signal information on the association (Naya et al., 2003). Similarly, 

another recent study recorded units in the monkey perirhinal cortex and TE during a task 

in which similar visual stimuli were differentially associated with reward. They found 

that perirhinal units only signalled stimulus reward outcome when the reward 

contingency was deterministic and not when it was random (Eradath et al., 2015). These 

results could be interpreted as indicating that the perirhinal cortex only encodes object-

outcome associations when this relationship is evident and not when it is ambiguous 

(Inhoff & Ranganath, 2015). Interestingly, it was reported in the rat study that feature 

ambiguity was encoded at the population level in the perirhinal cortex (Ahn & Lee, 

2015). Thus, although the perirhinal cortex is undoubtedly involved in processing visual 

stimuli, the precise nature of this contribution is still to be elucidated. Nonetheless, this 

evidence does not preclude the perirhinal cortex from signalling stimulus familiarity 

upon subsequent presentations of a stimulus, it does however suggest that this is not its 

the only role. 

The serial recognition task in monkeys (described above) has also been used to explore 

differential responses to novel and familiar stimuli in the hippocampus. The repetition 

suppression effect was observed in less than 3% of neurons in the hippocampus (in one 

study, 0%); that is below the generally accepted level of chance, i.e., 5% (Brown et al., 

1987; Rolls et al., 1993; Xiang & Brown, 1998). Further, the time taken for a neuron to 

respond following stimulus onset is known as the response latency. Xiang & Brown 

(1998) reported response latencies were shortest in area Te2 (75 ms) and progressively 

longer in perirhinal cortex (75 – 135 ms) and entorhinal cortex (135 – 225ms). In the 

hippocampus, response latencies were typically 140 – 260 ms (Rolls et al., 1993). Thus, 

it seems unlikely that the responses seen in the hippocampus were generated up-stream 

of those in the perirhinal cortex (Brown & Aggleton, 2001). The main information 

reported to be encoded by these few differentially responsive neurons in the 

hippocampus was on the relative recency of the stimulus (Rolls et al., 1993). Another 

study reported that hippocampal neurons encode information on highly familiar images 

of scenes but they found no difference in the magnitude of response between novel and 

highly familiar images (Yanike et al., 2004). It should be noted, that there is a vast 

literature on hippocampal place cells and their contribution to spatial memory (O’Keefe 

& Dostrovsky, 1971; O’Keefe & Burgess, 1996; McNaughton et al., 2006; Moser et al., 

2008). Additionally, when the spatial location or the temporal order of stimulus 

presentation is relevant then hippocampal encoding also occurs (Knierim et al., 2006; 

Manns et al., 2007; Manns & Eichenbaum, 2009; Komorowski et al., 2009; McKenzie et 
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al., 2014). Thus, neuronal recording evidence suggests that the hippocampus is not 

involved in discriminating whether a stimulus is novel or familiar but rather is involved 

in associative learning about these stimuli. This evidence is consistent with dual-process 

models of recognition memory. 

1.3.8 Behavioural distinctions between recollection and familiarity 

1.3.8.1 E-maze 

Behavioural dissociations between recollection and familiarity have been achieved using 

a paradigm known as the E-maze (Figure 1.1E; Eacott et al., 2005). In the first sample 

phase, rats are exposed to a pair of objects located as illustrated in the left panel of 

Figure 1.1E. In the second sample phase the context (appearance of the maze) is 

changed and the locations of the objects are swapped. During a second retention interval 

the rat is habituated to one of the objects in a holding cage. The subsequent test phase 

can take one of two forms; in a familiarity test the objects are placed in the same 

locations as they were during the sample phase with the associated context (Figure 1.1E, 

left panel). This variant of the task can be solved based on familiarity as rats can see the 

objects from the start point in the maze and intact rats will preferentially explore the 

non-habituated, less familiar object (Eacott et al., 2005). In a recall test, objects are 

placed in the two outer arms where they cannot be seen directly from the start point 

(Figure 1.1E, right panel). The side they are placed on is congruous with the sample 

phase in the same context. As the rats cannot see the objects from the start point, they 

must use the context to guide their decision on which arm to turn down to reach the non-

habituated object. Thus, this form of the task cannot be solved simply using familiarity 

but must involve recollection. Again, intact rats can use these contextual cues to guide 

their behaviour (Eacott et al., 2005). Using this paradigm, recollection and familiarity 

have been tested and dissociated, not only in the same animal but in the same trial. It 

was shown that rats with lesions to the fornix had no preference for turning towards the 

correct arm, demonstrating impaired recall. In the same trials, object preference was then 

measured based on subsequent preferential exploration and it was found that they spent a 

greater amount of time exploring the non-habituated object so demonstrating intact 

familiarity (Eacott & Easton, 2007; Easton et al., 2009). This behavioural dissociation 

provides further evidence for the dual-process view of recognition memory. 

Additionally, this paradigm has been used to demonstrate that recollection was impaired 

in rats with fornix lesions that disconnect the hippocampus while familiarly was spared. 
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1.3.8.2 Rodent receiver operating characteristics 

The implication that hippocampal lesions have little effect on a rat’s ability to 

successfully discriminate novel from familiar objects has been extended beyond visual 

recognition. Paralleling the results of visual recognition memory, hippocampal lesions 

induced a minor impairment in an odour DNMS task that was only evident at long 

delays (Dudchenko et al., 2000). It was then demonstrated, at shorter delays, that lesions 

to the hippocampus do not impair a rat’s ability to distinguish novel from familiar 

odours but simultaneously impair their capacity to remember the temporal order of these 

presentations (Fortin et al., 2002). This odour-based paradigm was developed to 

generate an interesting set of studies that employed analysis of receiver operating 

characteristics (ROCs).  

An ROC is a function that plots the probability of a ‘hit’ against the probability of a 

‘false alarm’ across different response criteria (Figure 1.7). A ‘hit’ corresponds to a 

subject correctly categorising a previously encountered item as familiar, while a ‘false 

alarm’ occurs when they incorrectly classify a new stimulus as familiar. The response 

criteria reflect the confidence with which the recognition decision is made. The left side 

of an ROC curve corresponds to choices made with a strict response criterion; i.e., few 

hits but also few false alarms. The right side of an ROC represents progressively lenient 

response criteria, a situation in which there are a high number of hits with a 

correspondingly high number of false alarms. Chance performance is represented by a 

diagonal symmetrical line through the origin as it reflects an equal number of hits and 

false alarms occurring at any given confidence level. Successful recognition memory, 

that is, a greater number of ‘hits’ than ‘false alarms’, results in a function that lies above 

this chance line. ROCs derived from normal subjects engaged in a recognition memory 

task display a characteristic shape; an asymmetric (above origin Y-intercept) curvilinear 

function (Figure 1.7A). The Dual Process Signal Detection model supports dual-process 

theories of recognition memory. This model proposes that recollection is represented by 

an asymmetric linear function reflecting the threshold nature of recollection (Figure 

1.7B) while familiarity is characterised by a symmetrical curvilinear function (Figure 

1.7C; Yonelinas & Parks, 2007).  
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Figure 1.7. Idealised ROC functions for item recognition memory. 

(A) The ROC curve for recognition memory is typically asymmetrical and curvilinear. (B) ROC 

function observed when performance is based only on recollection. (C) ROC function observed when 

performance is based only on familiarity. Adapted from Eichenbaum et al., 2012. 

 

This type of ROC analysis was originally developed in humans but has been adapted for 

odour recognition memory testing in rodents. Rats were initially presented with a 

sequence of digging cups with different odours mixed in the digging media. Following a 

delay, the rats were presented with another sequence of digging cups; some with familiar 

odours, some with novel odours. Selection of a novel odour was reinforced by a food 

reward buried in the associated digging cup. If the presented odours were familiar, then 

the rat was rewarded for digging in an alternative cup that was not scented. The response 

criteria or confidence levels with which the decisions were made was experimentally 

manipulated by varying the effort the rats had to expend to retrieve the rewards. This 

was achieved by systematically altering the height of the digging cups as well as varying 

ratio of the food reward available in the presented vs. alternative cup (Eichenbaum et al., 

2010). It was demonstrated in intact rats that this behavioural protocol produced an ROC 

with the asymmetrical, curvilinear function predicted by normal recognition memory 

(Fortin et al., 2004). Interestingly, when the rats subsequently received hippocampal 

lesions the resulting ROC functions retained the curvilinear shape but were no longer 

asymmetrical. It was concluded that this reflected a loss of recollection and a reliance on 

familiarity-based processing in the absence of the hippocampus. The opposite effect of 

increased reliance on recollection was seen in intact rats when the retention interval was 

increased (Fortin et al., 2004). 
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The task was further developed by adding an associative component; in the sample 

phase the rats had to learn about stimulus pairs – an odour paired with a particular 

digging media. In the test phase rats were presented with either familiar or rearranged, 

thus relatively novel, odour media pairings. Due to the associative nature of this type of 

task, it should be more reliant on recollection than familiarity processing. As predicted, 

the results indicated that the ROC functions from intact rats remained asymmetric but 

became linear, reflecting the proposed reliance on recollection and absent familiarity 

processing (Sauvage et al., 2008). Even given the task bias towards recollection, rats 

with hippocampal lesions could successfully perform the task but simultaneously 

displayed enhanced familiarly and reduced recollection as their ROC functions were 

more curvilinear and their asymmetry was diminished (Sauvage et al., 2008). It was 

suggested that this occurred as rats with hippocampal lesions unitised the pairs of stimuli 

into a single item (Sauvage et al., 2008); although this interpretation has been criticised 

by proponents of the single process view of recognition memory (Wixted & Squire, 

2011). Another experimental manipulation, namely adding a response deadline, altered 

the ROC functions of intact rats in the opposite manner to the associative task. Allowing 

only a short amount of time in which to make a recognition memory judgement biased 

responding to rely more on familiarity, reflected by a curvilinear, symmetrical ROC 

(Sauvage et al., 2010). The associative behavioural paradigm described above was also 

given to aged rats; their overall performance on the task was no different to that of 

young rats; however, their ROC functions indicated a greater reliance on familiarity 

processing and a loss of the asymmetric recollective component (Robitsek et al., 2008). 

The loss of recall, but not familiarity was associated with a simultaneous spatial memory 

deficit; one less controversially associated with hippocampal damage (Robitsek et al., 

2008).  

Taken together, these results indicate that recognition memory is composed of two 

processes that can be separated by experimental manipulation; forcing rapid recognition 

judgements causes reliance on familiarity while increasing the retention interval or 

adding an associative component to the task predispose to recollection (Eichenbaum et 

al., 2010; Sauvage et al., 2010). Furthermore, hippocampal lesions preferentially affect 

the recollective component (Fortin et al., 2004; Sauvage et al., 2008). Thus, this set of 

studies provides further evidence for the dual-process view of recognition memory. 

An opposing model that supports single-process models of recognition memory - the 

Unequal Variance Signal Detection (UVSD) model – can also account for the shape of 
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standard recognition related ROC functions. This model proposes that the curvilinear 

nature of  the ROC function is due to memory strength and the asymmetry is caused by 

greater variability in the memory strength of previously encountered items over new 

ones (Yonelinas & Parks, 2007). However, as described above, these two components 

have been demonstrated to be dissociable and the UVSD model cannot account for 

opposing effects on these two components of the function (Eichenbaum et al., 2010).  

1.3.9 Human studies 

1.3.9.1 Patient studies 

There are also insights to be gained from studying patients with damage to the medial 

temporal lobe. Of particular interest are those patients with damage confined to the 

hippocampus and sparing of the surrounding cortices. The Doors and People test is often 

used to test amnesic patients in order to distinguish between recall and recognition. It 

involves four subtests; two visual based tests, one of recall and one of recognition as 

well as verbal based tests of both recall and recognition (Baddeley et al., 1994). This test 

has been administered to patients with pathology restricted to the hippocampus, who 

demonstrated impairments on the recollection subtests with relatively spared recognition 

(Baddeley et al., 2001; Mayes et al., 2002; Aggleton et al., 2005; Barbeau et al., 2005; 

Adlam et al., 2009).  

Studies employing signal detection analyses in humans have also demonstrated that 

recollection and familiarity can be separated based on the shape of their ROC curves 

(Yonelinas, 2002; Yonelinas & Parks, 2007). These functions are derived in the same 

manner as that described for rats (Section 1.3.4); although response criteria are often 

obtained by asking the subject to rate how confident they are in their decision of prior 

occurrence on a scale from one (definitely novel) to six (definitely familiar). ROC 

curves derived for patients with circumscribed hippocampal pathology have been shown 

to be curvilinear and symmetric, demonstrating reliance on familiarity over recollection 

(Yonelinas et al, 1998, 2002; Aggleton et al., 2005; Peters et al., 2009). However, this 

loss of asymmetry has been interpreted as a general reduction in memory strength due to 

hippocampal damage rather than a specific loss of recollection (Wais et al., 2006; Squire 

at al., 2007; Dede et al., 2013). In this latter interpretation, consistent with a single-

process recognition view, a symmetrical ROC curve indexes weak memory. On the 

other hand, an asymmetrical ROC curve denotes a strong memory due to the fact that the 

previously encountered stimuli will have greater variance associated with them than the 
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new stimuli. Further, this implies that recollective processes can occur in the absence of 

the hippocampus (Squire at al., 2007). Although care is required when interpreting these 

results as it has been demonstrated that ROC analyses may not be suitable for testing 

long-term amnesic patients, who may have developed alternative coping strategies (Bird 

et al., 2008). 

Another common paradigm used to differentiate recollection from familiarity in humans 

is the remember/know task in which subjects are asked if an item is new, or if it was 

encountered in the sample phase, and further, whether they actually recall seeing the test 

item previously (remember) or if it simply feels familiar (know). In source memory or 

associative recognition tasks, recollection is confirmed by asking the subject to indicate 

not only if the stimulus has been encountered previously, but if so, the experimental 

situation in which this occurred. An example would be asking the participant the colour 

of the background on which the stimulus was seen or which stimuli were shown 

simultaneously. These, along with similar paradigms, have been utilised in single patient 

case studies as well as larger group studies. These studies have demonstrated that 

amnesic patients with damage restricted to the hippocampus have impairments in tests of 

recall with relative preservation of familiarity, while damage that encompasses the 

hippocampus and surrounding cortices results in diminished performance in both forms 

of memory (Aggleton & Shaw, 1996; Yonelinas et al, 1998; Mayes et al., 2002, 2004; 

King et al., 2004; Pascalis et al., 2004; Turriziani et al., 2004; Aggleton et al., 2005; 

Barbeau et al., 2005; Holdstock et al., 2005; Uncapher et al., 2006; Bowles et al., 2010). 

However, the construct validity of the remember/know paradigm has been questioned; it 

has been suggested that this paradigm probes memory strength rather than recall and 

familiarity (Wais et al., 2008). 

The complementary pattern has also been demonstrated, i.e., impaired familiarity and 

preserved recollection. Patient, NB, received a resection of left her temporal cortex that 

included perirhinal and entorhinal cortices, while her hippocampus remained functional 

(Bowles et al. 2007, 2011). The same research group went on to demonstrate an 

interesting double dissociation between NB and a patient lacking their hippocampus. 

While their overall recognition performance was matched, their greater deficits were in 

familiarity and recollection respectively (Bowles et al., 2010). Damage to the 

surrounding cortex that spares the hippocampus is rare but insights can also be gained by 

comparing patients with hippocampal damage to those with hippocampal plus cortical 

damage. Patients with more widespread medial temporal lobe damage have been shown 
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to be more severely impaired in object recognition and object discrimination tasks than 

patients with damage confined to the hippocampus (Buffalo et al., 1998; Barense et al., 

2005; Lee et al., 2005b). 

Of potential relevance are contrasts between patients with semantic dementia (the 

temporal lobe variant of frontotemporal dementia) and those with Alzheimer’s disease. 

Generalised medial temporal lobe atrophy is common to both of these pathologies but 

greater perirhinal and entorhinal degeneration is associated with semantic dementia 

while hippocampal atrophy is more common in Alzheimer’s disease (Davies et al., 

2004). A double dissociation has been demonstrated; Alzheimer’s disease is associated 

with impaired discrimination of landscape scenes while semantic dementia is associated 

with compromised face discrimination (Lee et al., 2006, 2007). Semantic dementia is not 

associated with object recognition memory deficits when sample and test items are 

identical, however, altering perceptual features of the items (e.g. colour) induces deficits 

(Graham et al., 1997, 2000) and under these perceptually demanding conditions, 

semantic dementia patients display high false recognition rates (Simons et al., 2005). 

Additionally, a subset of patients with temporal lobe epilepsy experience déjà vu 

(inappropriate feeling of familiarity) during their seizures, this has been linked to 

metabolic changes in the perirhinal and entorhinal cortices (Guedj et al., 2010) and 

further, a group of these patients demonstrated familiarity deficits during an interictal 

period (Martin et al., 2012). 

As with animal studies, amnesic patient data are not definitive; there are human studies 

which have demonstrated that some patients with focal hippocampal damage display 

similar deficits in tasks that tax recollection or familiarity (Stark et al., 2002, Manns et 

al., 2003; Cipoletti et al., 2006; Kirwan et al., 2010; Smith et al., 2011; Dede et al., 

2013). An additional layer of complexity is added by the finding that hippocampal 

damage can be associated with familiarity impairments for some stimulus types but not 

others (Cipoletti et al., 2006; Smith et al., 2014) with a similar result following 

perirhinal damage (Martin et al., 2011). 

1.3.9.2 Functional imaging studies 

More compelling evidence comes from human functional and event-related MRI studies 

in healthy participants. Both single and double dissociations of function and anatomy 

have been reported based on variants of the remember/know or source memory 

paradigms described above. Familiarity processing is associated with cortical activity 

adjacent to the hippocampus (generally presumed to be perirhinal cortex) while 
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processing of contextual information (recollection) is associated with hippocampal 

activity (Davachi et al., 2003; Henson et al., 2003 Ranganath et al., 2003; Gonsalves et 

al., 2005; Yonelinas et al. 2005; Daselaar et al. 2006; Kensinger & Schacter 2006; 

Montaldi et al., 2006; Diana et al., 2007, 2010; Flegal et al., 2014). Further, greater 

activation in the perirhinal cortex at the time of encoding is associated with stimuli that 

are later judged to be highly familiar (Davachi et al., 2003; Ranganath et al., 2003; 

Kensinger & Schacter, 2006) whereas during retrieval, highly familiar stimuli are 

associated with reduced perirhinal activity (Henson et al., 2003; Gonsalves et al. 2005; 

Daselaar et al. 2006; Montaldi et al. 2006). Greater hippocampal involvement has been 

observed during a test of recognition that taxed context retrieval (Flegal et al., 2014). 

This parallels results obtained from neuronal recording studies in animals (discussed 

above). A study involving both functional MRI and intracranial electroencephalography 

(iEEG) recordings is of particular note as iEEG recordings have much better temporal 

resolution than any MR-based technique. It was reported that item processing occurs 

initially in the perirhinal cortex, while hippocampal activity appears after a novelty 

decision has already been made and so is likely to be post-processing (Staresina et al., 

2012). 

In contradistinction are fMRI studies that have reported similar activity levels in the 

hippocampus and the surrounding cortices when subjects encode items that will 

subsequently be remembered in isolation (familiarity) or remembered along with source 

information (recall) (Gold et al., 2006; Shrager et al. 2008). Further, a study found that 

hippocampal activity at retrieval is equivalent for both recollection and familiarity when 

the memory is strong (Smith et al., 2011). Additionally, single unit recordings in the 

hippocampus of epileptic patients identified a population of neurons that increased their 

firing rate in response to novel stimuli as well as those that increased firing in response 

to familiar stimuli, even when behavioural performance on the spatial attributes of the 

task were at chance (Rutishauser et al., 2006).  

In summary, a large body of evidence from a diverse set of experimental paradigms 

exists to support dual-process accounts of recognition memory but there is also evidence 

to support single-process, memory strength based accounts. Thus, further investigation is 

required. Addressing this issue by looking at functional networks, rather than assessing 

individual regions may aid in clarifying the matter. 
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1.4 Use of the ‘bow-tie’ maze for testing rodent recognition 

memory 

Some of the main advantages of the spontaneous object recognition task (described in 

section 1.2.2) are the same features that bring potential problems. One issue is that the 

task is based around spontaneous behaviour. This feature inevitably contributes to 

variance between subjects, so decreasing statistical power. A further issue is that the 

amount of exploration given to a particular novel or particular familiar object might be 

biased by individual preferences to specific types of objects. The solution is to 

counterbalance the choice of novel and familiar objects within a study, but this 

arrangement still adds variance, unless the test objects are equivalently matched for their 

attractiveness. A consequence of the inter-animal and inter-stimulus variance is the 

frequent need for additional trials, additional rodents, or both.   

Another problem is that the length of time taken to run a single recognition test means 

that experimenters typically complete no more than one trial per day.  This limitation 

means that test sessions often have to be repeated to combat variance.  It also means that 

added importance is attached to the particular choice of the individual objects used for 

the familiar and novel stimuli. The second problem is that the test animals are repeatedly 

handled, not just before and after testing, but also in the middle of testing (to begin and 

end the retention interval).  The individual reaction of the test animals to being held is 

again likely to increase variance, especially as both individual rodents and individual 

experimenters may behave differently.  This problem is compounded further if the brain 

manipulation under investigation affects stress or affect. To counteract both problems it 

is often necessary to use relatively large group sizes or risk the problem of having 

insufficient power to detect real effects. 

In order to address these concerns, the ‘bow-tie maze’, introduced by Albasser et al. 

(2010a) was chosen as the test apparatus for all object-based memory tests described in 

this thesis. This was selected as the task utilises the strongest features of the spontaneous 

object recognition task while addressing as many of its shortcomings as possible. This 

task is a hybrid of DNMS and spontaneous object recognition, drawing key elements 

from both tasks. The central feature is that rodents repeatedly explore pairs of objects at 

opposite ends of an enclosed maze shaped like a bow-tie. Each pair of stimuli consists of 

one novel object and one familiar object (Figure 1.8).  A sliding door in the middle of 

the maze separates the two ends, so ensuring discrete trials. This arrangement makes it 

possible to run multiple trials within a session without handling the rodents. Although 
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the animals have to be pre-trained to run from one end of the maze to the other for food 

rewards, this pre-training helps to ensure that the animals are well habituated to the test 

environment and so reduces stress.  

Food rewards are placed under the test objects to encourage their investigation and to 

ensure that the rats shuttle up and down the apparatus. The animals do not, however, 

learn a reinforced matching or nonmatching rule as both novel and familiar objects are 

equally associated with reward (Albasser et al. 2010a).  Instead, recognition is still 

signalled by spontaneous exploration preferences. Each trial is typically just one minute 

long, i.e., much shorter than a normal spontaneous recognition trial tested in an open 

field.  This is possible as rodents approach the objects almost immediately in order to 

retrieve food rewards, and so explore from the outset of the trial. The one minute trial 

time also takes advantage of the finding that in standard spontaneous object recognition 

tasks the most discriminatory period of exploration between novel and familiar objects 

often takes place at the beginning of the test session  (Dix & Aggleton, 1999).  

Exploiting these features, a rat in the bow-tie maze can, for example, receive twenty 

recognition trials in twenty-one minutes.  In contrast, the same duration of testing in a 

standard spontaneous exploration task would normally allow just one trial. 

 

Figure 1.8. The 'bow-tie' maze. 

(A) Schematic of the bow-tie maze. A central sliding door separates the two ends of the maze in 

which two objects are placed. (B) General procedure for running the standard object recognition test 

showing the presentation order of the objects. All objects are rewarded. Arrows show direction of rat 

movements. Bold letters represent novel objects and grey letters represent familiar objects. Adapted 

from Albasser et al., (2011a).  

 

The bow-tie maze has high plain sides to limit distracting visual stimuli and reduce 

spatial cues (Figure 1.8A).  To begin a session (trial 0), the rat is put into one end of the 
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maze, which also contains an object (A) that covers a food reward (Albasser et al., 

2010a; Figure 1.8B). The animal is allowed to retrieve the food reward and will then 

explore the object. One minute after being placed in the maze, the central sliding door is 

opened and the animal runs to the opposite end for more food rewards.  In the simplest 

task design, the rodent finds novel object B and an identical copy of the now familiar, 

object A (trial 1).  Successful recognition is reflected in the greater amount of time spent 

exploring novel object B. After a further minute, the central door is raised and the 

animal runs back to the opposite end, where it can explore object B (now familiar) and 

novel object C (trial 2). Recognition is measured by calculating the cumulative 

difference in time spent exploring the novel and familiar objects (‘cumulative D1’) over 

successive trials.  In addition, this D1 score can be divided by the total amount of object 

exploration (‘updated D2’) to give a D2 score; a ratio that ranges between +1 and -1 

(Figure 1.9).   

Experiments run in the bow-tie maze have typically used this ‘running recognition’ 

protocol (Figure 1.8B).  This design has several benefits; first, it increases the numbers 

of trials that can be given within a set period as there is no discrete sample phase.  Also, 

importantly, by ensuring that every object serves as both a familiar and a novel stimulus, 

the influence of any individual object that might be particularly attractive or aversive to 

the test animals are cancelled out as any such effects should be counteracted across 

subsequent trials. A further benefit is that over the course of several sessions the task 

could use over a hundred different objects, rather than repeatedly use a very limited 

sample of objects. Again, the increase in the number of stimuli helps to remove any 

biases associated with particular objects. Using these designs it has been found that 

perirhinal cortex lesions impair object recognition (Figure 1.9A) while hippocampal 

lesions appear to spare recognition memory (Figure 1.9B,C; Albasser et al., 2010b, 

2011a, 2012, 2013a). This pattern is consistent with many studies using spontaneous 

object recognition and DNMS tasks.   
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Figure 1.9. Recognition memory results obtained in the bow-tie maze. 

(A) Object recognition by rats with perirhinal cortex lesions (black square) and surgical controls 

(white triangle); graph shows the updated D2 scores over successive trials. D2 is the time exploring 

the novel object minus the time exploring the familiar object, divided by total exploration. Scores can 

range from +1 to -1. Adapted from Albasser et al., (2011b). (B) Object recognition forgetting curve: 

Graph shows updated D2 scores of composite object recognition memory performance of rats with 

hippocampal lesions (black square) and their controls (white triangle) across various retention 

intervals used in separate experiments. (C) Object recency: graph showing the mean performance of 

rats with hippocampal lesions (black) and their surgical controls (white) on recency discrimination 

performance. Only the control group performed above chance. In addition, recognition performance is 

given for the two blocks of stimulus familiarization (SOR1 and SOR2) that included object 

recognition (retention delay 1 min). B, C. Adapted from Albasser et al. (2012). Data shown are mean 

±standard error of the mean. Group differences ∗∗∗p < 0.001. 

 

Additionally, the bow-tie maze offers several procedural variants that have been 

employed to test different aspects of object based memory. Retention delays have been 

increased by delaying the repeat of a stimulus to nearer the end of the series of 

continuous trials. In this way, both interference and retention delays can be varied by 

interposing other trials before returning to the now familiar object. Consequently, 

forgetting curves can be derived from the results of a single session (Albasser et al., 

2010a; Figure 1.9B). The fact that the test objects are immediately adjacent to food 

rewards means that the rats are encouraged to approach the objects, which are in 

constant locations. Consequently, once rodents are habituated to the bow-tie maze in the 
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light, it can also be used to examine non-visual object recognition (Albasser et al., 

2011b, 2013b). Additionally, identical pairs of objects, either novel or familiar, can be 

presented in order to further familiarise the animals with a particular set of objects or to 

increase the amount of time between discrimination trials (Albasser et al., 2012). 

The bow-tie maze can also be used to test recency memory (Albasser et al., 2012). 

Recency memory is the ability to discriminate between familiar stimuli based on the 

relative distance in time since they were last encountered; also known as temporal order 

memory. A common approach to testing recency memory is to divide the test session 

into multiple stages.  In the first phase the rat is exposed to multiple stimuli, and then 

removed from the apparatus so that the test session can follow at whatever interval is 

required.  Further, it was also possible to test both recognition and recency of the same 

objects within a single test session (Albasser et al., 2012). Although the preferred 

behavioural procedure within the bow-tie maze has been a running recognition design, 

discrete sample and test phases could readily be run at opposite ends of the apparatus, 

i.e., more akin to DNMS. The apparatus has also been used for object-in-place 

recognition (Nelson & Vann, 2014).  

Another benefit of the bow-tie maze is its reliability in generating recognition 

discrimination scores (D1 and D2) that are significantly above chance with modest sized 

groups of animals (Albasser et al., 2010a; see also Ameen-Ali et al., 2012).  The 

multiple trials mean that individual control rats typically perform above chance with 

short retention delays (Albasser et al., 2010a). A closely related feature is that the 

variance of the updated D2 scores for any group of animals decreases as the trial 

numbers within a session increase (Figure 1.9A; Albasser et al., 2010a, 2011b). 

The gain in power provided by such hybrid tasks has been examined more formally by 

Ameen-Ali et al. (2012).  These researchers devised a slightly more elaborate task, 

known as the E-maze (similar to that depicted in Figure 1.1E but with an additional 

holding area attached at the end of the arms), which shares many of the key features of 

the bow-tie maze.  In their task there are several compartments but, like the bow-tie 

maze, the rat is trained to run through the apparatus where it receives sample and test 

trials without being handled. The animals also receive multiple trials in a session 

(Ameen-Ali et al., 2012, 2015). The test objects are again associated with food rewards, 

while recognition is determined on the basis of preferred exploration.  Comparisons with 

previous spontaneous object recognition studies by the same group helped to confirm the 

gain in statistical power associated with such hybrid methods (Ameen-Ali et al., 2012). 
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1.5 The functional imaging of rodent recognition memory: 

Immediate-early gene mapping 

A key advantage of these relatively new recognition memory task variants is the ability 

to give multiple test trials within a single session. This section describes investigations 

into the study of recognition memory that could not be conducted without this particular 

feature. 

The term immediate-early gene (IEG) refers to a particular group of genes that do not 

require previous protein synthesis to be activated (Herrera & Robertson, 1996). For this 

reason, they have a temporal advantage over other genes, so giving the term 

‘immediate’. There are numerous immediate-early genes, which can be categorised into 

two groups.  One group, the ‘regulatory transcription factors’, influence cell function 

through the downstream genes that they regulate.  The second group, ‘effector factors’ 

can directly control specific cellular functions. There are thought to be between 10-15 

IEGs that are regulatory transcription factors (Lanahan & Worley, 1998).  Two of these 

are the genes c-fos and zif268, both of which are assumed to have roles in long term 

plasticity (Abraham & Dragunow, 1991; Guzowski, 2002; Tischmeyer & Grimm, 1999).  

Expression of c-fos has commonly been used as a proxy marker of neuronal activity, as 

increased neuronal activity causes its up-regulation and expression of its protein product, 

Fos (Herrera & Robertson, 1996; Chaudhuri, 1997). This IEG is commonly chosen for 

use in conjunction with behavioural tests as it has relatively low baseline expression 

levels that increase quickly following neuronal activation and then again return to 

baseline due to tight auto-regulatory control (Chaudhuri, 1997; Zangenehpour & 

Chaudhuri, 2002). Indeed, the temporal profile of this expression has been characterised; 

Fos, the protein product of c-fos, peaks between 60 and 120 minutes after the inducing 

event (Bisler et al., 2002; Zangenehpour & Chaudhuri, 2002).  Studies have shown that 

expression of c-fos is related to synaptic plasticity associated with learning and memory 

processes (Swank et al., 1996; Tischmeyer & Grimm, 1999; Guzowski, 2002; He et al., 

2002; Countryman et al., 2005; Guzowski et al., 2005; Katche et al., 2010 Liu et al., 

2012; Ramirez et al., 2013). Importantly, it has been demonstrated that c-fos expression 

is required for effective long term recognition memory (Seoane et al., 2012), i.e., it has 

an integral role within this form of memory. Furthermore, contextual fear related 

memory engrams in the hippocampus have been optogenetically re-activated based on 

the activity of c-fos, and shown to affect behaviour, further implicating it in mnemonic 

processes (Liu et al., 2012). 
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1.5.1 Comparing c-fos expression for novel and familiar stimuli 

It has been demonstrated that when rats see novel visual stimuli there is increased 

expression of c-fos in the perirhinal cortex (Wan et al., 1999, 2004; Zhu et al., 1995b, 

1996, 1997), which parallels the increased single-unit activity also observed in the 

perirhinal cortex  (Zhu et al., 1995a). Of particular significance is the finding that 

knocking down c-fos expression by infusion of antisense Fos oligodeoxynucleotides into 

the rat perirhinal cortex immediately before or after the sample phase of a spontaneous 

novel object preference test disrupts the stabilisation of long term recognition memory 

(Seoane et al., 2012).  For these reasons, expression of c-fos in the perirhinal cortex is 

seen as a proxy marker for neural activity closely involved with recognition memory.   

Although immediate-early gene imaging provides exceptional anatomical resolution 

(down to individual neurons) it has much poorer temporal resolution. For example, in 

experiments that examine levels of Fos protein, there is often a gap of around 90 minutes 

between the target learning behaviour and the sacrifice of the animal.  While this interval 

is designed to capture peak production of Fos (Guzowski, 2002; Zangenehpour & 

Chaudhuri, 2002) it means that the source of the signal can become blurred. A further 

issue is that most IEG imaging studies require a control group that is matched for 

sensorimotor demands but is expected to show little or no learning when compared with 

the experimental group. Differential Fos levels are then assumed to reflect the learning 

condition.  Thus, the validity of this subtraction method depends on the appropriateness 

of the control condition.  

Initial studies of c-fos expression simply compared IEG activity levels in rats shown 

either novel or familiar stimuli (Zhu et al., 1995b, 1996, 1997).  These studies found 

raised c-fos expression associated with novel stimuli in the perirhinal cortex and visual 

association area Te2, but not in the hippocampus (Zhu et al., 1995b, 1996, 1997).  A 

refinement, the ‘split-viewing’ procedure, involved presenting novel visual stimuli to 

one eye of the rat and familiar stimuli to the other eye of the same rat (Wan et al., 1999; 

Warburton et al., 2003; Wan et al., 2004). Inter-hemispheric comparisons again showed 

that viewing novel stimuli was associated with raised c-fos expression in the perirhinal 

cortex and area Te2, but not in the hippocampus (Table 1.1; Wan et al., 1999). Changes 

in hippocampal activity were found, however, when stimulus novelty was introduced by 

rearranging the spatial configurations of familiar groups of stimuli, i.e., associative 

recognition (Table 1.1; Wan et al., 1999; Aggleton et al., 2012). 
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Table 1.1. Summary table of c-fos expression studies showing the patterns of Fos 

changes in tests of recognition memory. 

Brain region 

Novel object 

bowtie maze in 

the light 

(Albasser et al., 

2010b) 

Novel object 

bowtie maze in the 

dark 

(Albasser et al., 

2013) 

Paired viewing: 

Novel/familiar 

single images 

(Wan et al., 1999) 

Paired viewing: 

Novel spatial 

arrangement of 

familiar images 

(Wan et al., 1999) 

CA1 ↑ ↑ No change ↑ 

CA3 ↑ ↑ No change No change 

Dentate gyrus ↓ ↑ No change ↓ 

Subiculum No change - No change ↓ 

Lateral 

Entorhinal 
No change ↑ No change No change 

Medial 

Entorhinal 
No change No change - - 

Rostral 

Perirhinal 
No change ↑ - - 

Caudal 

Perirhinal 
↑ No change ↑ No change 

Area Te ↑ No change ↑ No change 

Symbols:  increased Fos counts with associative novelty;  decreased Fos counts with novelty; —

Fos counts were not made in the structure. 

 

A drawback of the c-fos imaging studies discussed so far is that there was no 

concomitant behavioural evidence to show that the rats could actually distinguish the 

novel from the familiar visual stimuli. It is most unlikely that this would be possible 

using the standard spontaneous recognition task (Ennaceur & Delacour, 1988), as 

animals normally experience a very small number of novel stimuli within a test session, 
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making it unlikely that the neural Fos signal would be sufficiently large to be detected.  

There may also be individual biasing effects caused by the particular objects selected for 

the task. Problems could also occur with individual animals that fail to show a clear 

preference for the novel stimuli.  Additionally, the need to handle the rat repeatedly 

would add further noise to the c-fos signal.   

The bow-tie maze provides a means to examine c-fos expression associated with 

recognition memory (Albasser et al., 2010b, 2013b). The apparatus allows for the 

presentation of multiple stimuli within a single recognition session, so increasing signal 

strength, while also increasing the likelihood of deriving clear preference measures for 

novel over familiar stimuli for individual animals. In studies using this apparatus, rats 

have been given 20 recognition trials, i.e., 20 novel objects vs. 20 familiar objects, and 

then perfused 90 minutes later for the immunohistochemical visualisation of the Fos 

protein. The use of this task raises two important procedural considerations.  The first is 

that the recognition test must contain both novel and familiar stimuli to make it possible 

to behaviourally confirm the recognition of repeated stimuli, i.e., the test cannot solely 

contain novel stimuli.  The second is the issue of how best to design a control condition 

that isolates those changes in c-fos activity associated with recognition memory.  This 

control condition needs to be matched to the visuo-motor demands of the recognition 

condition. In the first study to examine c-fos expression associated with behavioural 

measures of recognition (Albasser et al., 2010b), the control rats were given the same 20 

recognition trials with the same set of 20 objects as those given to the experimental 

(recognition) group on the final test day.  The critical difference was that these control 

rats had repeatedly been exposed to the same set of 20 objects over numerous, previous 

sessions, ensuring that all stimuli were familiar on the final test day. The impact of this 

familiarisation procedure could be seen in the final test session. The recognition memory 

group showed a strong preference for the novel over the familiar stimuli.  In contrast, the 

familiar object control group showed no clear preference between the test objects, 

presumably reflecting their acquired familiarity (Albasser et al., 2010b). 

Comparisons of c-fos expression after recognition testing  in the bow-tie maze (novel 

object recognition condition vs. familiar object control condition) revealed that 

recognition was associated with raised Fos counts (Table 1.1) in the caudal perirhinal 

cortex (areas 35 and 36), as well as area Te2 (Albasser et al., 2010b).  Other sites such as 

the prelimbic, infralimbic and anterior cingulate cortices did not show differential Fos 

levels.  These results are very similar to those from c-fos studies in which rats were 
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passively shown either novel or familiar stimuli (Zhu et al., 1995b; Wan et al., 1999, 

2004), as well as paralleling the outcome of lesion studies in these same areas (Barker et 

al., 2007; Winters et al., 2008; Warburton & Brown, 2010; Ho et al., 2011).  There was, 

however, one main difference; hippocampal changes in c-fos expression were found in 

the bow-tie maze task that had not been observed in the previous procedures that 

passively presented novel stimuli (e.g., Zhu et al., 1995b; Wan et al., 1999, 2004).  

Comparisons between rats in the bow-tie maze that explored either novel objects or only 

familiar objects (Table 1.1), revealed that in the novel object group the hippocampal 

subfields CA3 (septal) and CA1 (temporal) showed significant Fos increases, while the 

dentate gyrus (septal and intermediate) showed a Fos decrease (Albasser et al., 2010b). 

This pattern of hippocampal changes (Table 1.1) matches the Fos findings when rats are 

passively shown spatially rearranged familiar visual stimuli in the split-hemisphere 

procedure (Wan et al., 1999).  That is, relatively increased Fos counts were again seen in 

CA3 and CA1, while relatively decreased Fos counts were seen in the dentate gyrus 

(Wan et al., 1999; Albasser et al., 2010b). One interpretation, is that by exploring objects 

in the bow-tie maze the rats not only showed differential neural responses associated 

with novelty vs. familiarity, but also showed additional neural changes arising from the 

learning of other information associated with individual objects, e.g., their spatial or 

temporal attributes (Warburton & Brown, 2010).   

In a complementary bow-tie maze study, c-fos expression was examined after rats had 

discriminated novel from familiar objects in the dark (Albasser et al., 2013b). This study 

used essentially the same experimental and control protocols as described above, though 

all testing was carried out in the dark.  Thus, in the final session, one group experienced 

novel objects while the control group experienced the same set of familiar objects that 

had been given on all of the preceding sessions (Albasser et al., 2010b). Comparisons 

between these two groups showed increased c-fos activity in rostral perirhinal cortex, but 

not in caudal perirhinal cortex, of those rats discriminating novel from familiar objects 

in the dark.  This rostral-caudal perirhinal pattern is the opposite of that found for object 

recognition in the light (Albasser et al., 2010b), creating a potential double dissociation 

(Table 1.1). Novel objects in the dark were again associated with increased c-fos activity 

in the hippocampus, but the pattern of subfield change was also different to that seen the 

light (Table 1.1).  In the dark there were significant Fos increases in the dentate gyrus, 

CA1 and CA3 (Albasser et al., 2013b), whilst in the light there was a Fos decrease in the 

dentate gyrus, as well as Fos increases in CA1 and CA3 (Albasser et al., 2010b). In 

addition,  a wider array of other brain regions, some involved in spatial memory, were 
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activated by exploring novel objects in the dark in a bow-tie maze, e.g., the anterior 

thalamic nuclei, retrosplenial granular cortex, anterior cingulate cortex, and lateral 

entorhinal cortex (Albasser et al., 2013b).   

1.5.2 Network analyses based on structural equation modelling  

The main behavioural contrast that has been investigated in these c-fos expression 

studies (Albasser et al., 2010b, 2013b) is between rats that discriminate novel from 

familiar objects (recognition memory) and rats that only explore familiar objects. In 

order to investigate if the regional Fos differences observed in the medial temporal lobe 

reflect changes in networks of activity, an additional form of statistical analysis was 

employed.  

For these network analyses, the relationship between the activity-related Fos counts in 

different brain sites were examined using structural equation modelling (SEM). 

Structural equation models are multiple-equation regression models that can quantify 

causal (structural) relationships between a set of variables. This technique was originally 

developed for use in social psychology studies in which it is used to test theoretical 

relationships among several observed variables as well as using observed variables to 

estimate unobservable (latent) variables (Bollen & Long, 1993; Tabachnick & Fidell, 

2001; Schumacker & Lomax, 2010).  Although SEM is the commonly used 

nomenclature, the more precise term for the technique used here is path analysis, as the 

theoretical models to be tested involve relationships between observed, and not latent, 

variables. Consequently, this type of analysis can be thought of as a set of multiple 

equation regression models that can confirm or reject theoretical relationships between 

these observed variables. These relationships include inferring the potential direction of 

influence between two regions (Schumacker & Lomax, 2010). The strength of a 

relationship (path) between regions is estimated based on the covariance matrix of the 

observed data (Protzner & McIntosh, 2006). A model is assessed on how well it 

replicates the variance-covariance matrices of the observed data (Tabachnick & Fidell, 

2001).   

SEM is commonly used to test models of neuronal activity in distributed networks in the 

brain based on regional activity obtained from positron emission tomography and 

functional magnetic resonance imaging studies (McIntosh & Gonzalez-Lima, 1991, 

1994; Friston et al., 1993, Friston, 1994; Kim & Horwitz, 2009). It is used to study 

network dynamics based on the assumption that covariance between the activity of 
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different brain regions reflects neuronal interactions; i.e., that activity changes in one 

area are generated by alterations in the influence of a connected region (McIntosh, 

2002). It can be used to estimate effective connectivity; that is the influence one 

neuronal system exerts over another (Friston, 1994). Further, it can be used to estimate 

alterations in effective connectivity within an anatomically defined network based on 

task or group differences (Protzner & McIntosh, 2006; Kim & Horwitz, 2009). Indeed, 

relevant to the current work, it has been used to identify differences in the functional 

networks associated with visual processing of objects or spatial locations (McIntosh & 

Gonzalez-Lima, 1994) It has also been used to identify patterns of effective connectivity 

in a given data set (Bullmore et al., 2000). In these types of studies, when sample size is 

small, caution must be taken when interpreting the absolute numbers of the estimated 

path coefficients. However, it has been demonstrated that the relative strength of path 

coefficients usually recapitulate the strength of the underlying relationship when models 

are non-recursive (Boucard et al., 2007). The use of this statistical technique in the 

experiments described in this thesis is very similar, as it also employs a proxy marker of 

neuronal activity estimated in discrete regions of the brain.  

This technique has previously been used to derive anatomical-based models to explain 

the interregional correlations based on activity patterns of Fos seen between various 

regions of interest (Jenkins et al., 2003; Poirier et al., 2008; Albasser et al., 2010b).  

These models involved sites known to be important for memory, including the perirhinal 

cortex, and were then applied to established anatomical pathways between regions of 

interest within and beyond the temporal lobe.  By applying SEM to the Fos counts from 

the initial bow-tie maze study of recognition memory, two different patterns of 

correlated activity emerged (Albasser et al., 2010b). These patterns depended on 

whether the rats had explored novel or familiar objects. The optimal network model of 

correlated activity  associated with exploring novel objects (Figure 1.10 lower)  involved 

area Te2, parahippocampal regions (perirhinal cortex and lateral entorhinal cortex), as 

well as various hippocampal subfields (Albasser et al., 2010b). The best fitting SEM 

model associated with exploring familiar objects (Figure 1.10 upper) again involved area 

Te2, the perirhinal and lateral entorhinal cortices, but there was a crucial difference in 

the hippocampus (Figure 1.10). While novel stimuli were associated with preferential 

activity correlations in the direct pathway from the lateral entorhinal cortex to the 

dentate gyrus (and CA3), familiar stimuli were principally associated with correlated 

activity in the direct pathway from the lateral entorhinal cortex to CA1, i.e., the 

familiarity network largely bypassed the pathway to the dentate gyrus (Albasser et al., 
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2010b).  These differences are striking as they suggest a different mode of hippocampal 

interaction when learning about novel as opposed to familiar stimuli (Figure 1.10). This 

methodology also provides the ideal framework for addressing the question of what 

happens to these learning related networks if the hippocampus is removed. This will be 

the first experiment to be described in this thesis. 

 

Figure 1.10. Neural networks derived for recognition memory. 

Optimal interactions derived from SEM of Fos-related activity in the control familiar object condition 

(top panel) and novel object condition (bottom panel). The strength of the causal influence of each 

path is denoted both by the thickness of the arrow and by the path coefficient next to that path. Sites 

depicted: area Te2 (Te2), perirhinal cortex (PRH), lateral entorhinal cortex (LEC), hippocampal 

subfields CA1, CA3 and dentate gyrus (DG), dorsal subiculum (dSub), anterior thalamic nuclei (Ant 

Thal) and prelimbic cortex (PL). *p < 0.05; ***p < 0.001. Adapted from Albasser et al., 2010b. 

 

The inference is that stimuli signalled as being familiar activate the hippocampus in a 

way that is qualitatively different from that seen for novel stimuli.  The familiar stimulus 

model could be further examined by looking at a closely related form of memory, 

recency memory. This term describes the ability to distinguish stimuli based on their 

temporal properties, i.e., how long ago in the past they were last encountered.  To test 

recency memory, it is necessary to use familiar stimuli, and so it might be predicted that 

the c-fos activity network associated with recency memory will preferentially involve 

direct connections from the lateral entorhinal cortex to CA1.  This question will be also 

addressed in this thesis. 

Other relevant evidence comes from a study that compared activity levels of a different 

immediate early gene, zif268, in the hippocampal and parahippocampal regions of rats.  
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The learning task, spatial working memory in a radial arm maze, was selected as it is 

known to depend on the hippocampus (Olton et al., 1979). In contrast to object 

recognition, task performance does not normally require the integrity of the perirhinal 

cortex (Aggleton et al., 2004). In this experiment, zif268 levels associated with either 

early or late learning of a radial-arm maze task (Poirier et al., 2008) were compared.  

The optimal network model associated with early learning (i.e., when there should be 

more novel information and larger gains of learning) was remarkably similar to that 

found for novel object recognition in the bow-tie maze. Consequently, early radial-maze 

learning was associated with entorhinal → dentate/CA3 interaction (Poirier et al., 2008).  

In contrast, late learning was more associated with direct entorhinal → CA1 interactions, 

while the dentate gyrus and CA fields seemed to be functionally disconnected.  

Together, these studies demonstrate that combining c-fos imaging studies with SEM is a 

powerful technique that can be used to explore neural network dynamics associated with 

different learning opportunities. 

1.6 Models of hippocampal-parahippocampal interactions 

The perirhinal cortex has both direct and indirect anatomical connections with the 

hippocampus via the entorhinal cortex (Furtak et al., 2007; Burwell & Agster, 2008). 

Consequently, there are several means by which these regions have the potential to 

impact on one another. The notion that these areas function interdependently is central to 

many models describing how the medial temporal lobe supports memory. However, 

there are several, in some cases conflicting, viewpoints on the specific nature of these 

systems interactions; two of which were described in Section 1.3.2. A signal from the 

perirhinal cortex affecting hippocampal processing is predicted by several models of 

medial temporal lobe interactions and some of these will be described in this section. 

1.6.1 Gatekeeper hypothesis 

One such hypothesis is the gatekeeper model of declarative function (Fernández & 

Tendolkar, 2006).  In this model, Fernandez and Tendolkar (2006) propose that the 

rhinal cortex performs integrated processes of recognition, encoding and information 

transfer to the hippocampus. When a novel stimulus is encountered, many neurons of the 

rhinal cortex are required to process it, giving the sensation of novelty, efficient 

encoding of the stimulus properties and efficient transfer of information to the 

hippocampus. In contrast, when a familiar stimulus is encountered few rhinal neurons 

are required for processing and, as such, leads to a sense of familiarity, less effective 
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encoding of stimulus properties and a reduction in information transfer to the 

hippocampus (Fernández & Tendolkar, 2006). This model is supported by rodent and 

primate studies that have demonstrated an effect of activity suppression upon stimulus 

repetition (Fahy et al., 1993; Zhu et al., 1995a; Xiang & Brown, 1998; Woloszyn & 

Sheinberg, 2012). Particularly convincing evidence comes from human imaging studies 

that demonstrated perceived memory strength corresponds to a reduction in activity in 

the rhinal cortex upon subsequent viewing of a stimulus (Gonsalves et al., 2006; 

Montaldi et al., 2006).  The SEM findings described above both concur with and extend 

these notions by identifying potential anatomical substrates reflecting changes in 

hippocampal activity, depending on the novelty or familiarity of the stimulus being 

processed. One of the main aims of this thesis is to explore further the relationship 

between object class (i.e., its novelty or familiarity) and activity in these regions and 

perhaps more informatively, how regional activity changes in concert.  

1.6.2 Binding of item and context model 

This model is based on the premise that there are two processing streams within the 

medial temporal lobe that can be dissociated based on the type of information to be 

encoded (Eichenbaum et al., 2007). Object feature, so-called ‘what’, information is 

initially processed by the perirhinal and subsequently the lateral entorhinal cortex. 

Contextual, or ‘where’, information is dealt with by the parahippocampal (primate 

homologue of rodent postrhinal) cortex and medial entorhinal cortex.  These ‘what’ and 

‘where’ information streams then converge on the hippocampus to be bound together to 

form item–context associations (Eichenbaum et al., 2007, 2012).  

The model was formalised by Diana et al., (2007) as the ‘binding of item and context’ 

(BIC) model. It predicts that judgements of prior occurrence of items can be supported 

by the perirhinal cortex as only ‘what’ information, and not associated contextual 

information, is required for these familiarity decisions. This model further predicts that 

the parahippocampal cortex, in addition to the hippocampus, is required for recollective 

processing as these regions represent contextual information and item-context relational 

information respectively. Further, item familiarity is hypothesised to be reflected in an 

attenuated response in the perirhinal cortex as compared to the initial encounter. 

Depending on the circumstances, this perirhinal activation may be sufficient to 

reactivate the pattern of activity in the hippocampus that occurred during learning, which 

in turn can reactivate the contextual information in the parahippocampal cortex, 

resulting in recollection (Diana et al., 2007; Ranganath, 2010). Thus, this model 
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addresses how different types of stimuli to be processed define regional activation 

patterns rather than directly addressing recognition memory per se. The predictions 

derived from this model regarding recollection and familiarity are, however, consistent 

with dual process accounts of recognition memory. Accordingly, this model predicts that 

hippocampal damage will selectivity impact recollection and spare familiarity 

(Eichenbaum et al., 2007), as the hippocampus is proposed to provide a spatiotemporal 

framework within which memories for events and their contexts can be tied together in 

‘memory space’ (Eichenbaum et al., 2012). 

 

 

Figure 1.11. Schematic of BIC model. 

Representation of the anatomical connections among, and the proposed roles of, the hippocampus, 

perirhinal cortex and parahippocampal cortex in episodic memory according to the BIC model. The 

arrow between the perirhinal cortex and parahippocampal cortex indicates the anatomic connection 

between the two regions. Adapted from Diana et al., 2007 

 

More recently the BIC model has been expanded upon and this new iteration is known 

as the anterior temporal and posterior medial (AT-PM) framework (Ranganath & 

Ritchey, 2012). The idea of two processing streams was extended beyond the medial 

temporal lobe into two separate functional networks. The AT system is composed of the 

perirhinal and lateral entorhinal cortices, the temporopolar cortex, lateral orbitofrontal 

cortex and amygdala. This anterior system supports object perception as well as 

familiarity and semantic memory. The PM system includes the parahippocampal cortex, 

retrosplenial cortex, anterior thalamic nuclei, mammillary bodies, pre- and 

parasubiculum as well as components of the default mode network. This posterior 
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system is proposed to support scene perception in addition to episodic and recollective 

memory. The hippocampus is postulated to be the point of convergence between these 

two systems (Ranganath & Ritchey, 2012).  

1.6.3 Knierim’s local vs. global reference frames 

This model also finds its roots in the existence of two parallel processing streams within 

the medial temporal lobe. The lateral entorhinal cortex processes non-spatial ‘what’ 

information and the medial entorhinal cortex processes spatial ‘where’ information 

supplied by the perirhinal and postrhinal cortices respectively. The lateral entorhinal 

cortex subsequently projects this information to the distal region of CA1 and proximal 

subiculum, while the medial entorhinal cortex forwards information to the proximal 

region of CA1 and distal subiculum. These separate information streams are postulated 

to interact in a ‘side-loop’ that projects to the dentate gyrus and CA3 and this is engaged 

when object-context association are behaviourally relevant (Knierim et al., 2006).  

 

Figure 1.12. Wiring diagram proposed process of local and global reference frames. 

This schematic depicts the parallel processing streams into the hippocampus proposed to underlie 

local reference frames (blue) and global (red) reference frames/path integration. The diagram 

structure emphasizes the dual processing streams that pass through the lateral entorhinal cortex and 

medial entorhinal cortex. Adapted from Knierim et al., 2014. 
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1.6.4 Perceptual mnemonic feature conjunction model 

Of additional interest is a model of perirhinal cortex function known as the perceptual 

mnemonic feature conjunction model. This model hypothesises that the perirhinal cortex 

functions in perception as well as memory processing by its involvement in the ventral 

visual processing stream (Murray & Bussey, 1999; Bussey et al., 2005, 2007; Murray & 

Wise, 2012). It suggests that stimuli are encoded or represented hierarchically 

throughout the ventral visual stream. Individual features of stimuli are represented early 

in visual processing in caudal brain regions. These representations become more 

integrated and complex in more rostral brain regions activated later in visual processing. 

This information converges on the perirhinal cortex, which functions to encode complex 

conjunctive representations of stimuli in order to allow for object identification by 

resolving feature ambiguity (Murray & Bussey, 1999; Murray & Richmond, 2001; 

Bussey et al., 2005; Murray et al., 2007). This theory is supported by experiments that 

have shown that loss of the perirhinal cortex in monkeys and rats is associated with 

deficits in discriminating stimuli with high feature ambiguity, that is, many overlapping 

features, even when no delay is imposed and so theoretically cannot tax memory 

(Buckley et al, 2001; Bussey et al., 2002, 2003; Saksida et al, 2006; Bartko et al., 

2007a,b). Similar impairments have been observed in patients with widespread damage 

to the medial temporal lobe but not if the damage is restricted to the hippocampus 

(Barense et al., 2005, Lee et al., 2005a,b). 

Loss of the perirhinal cortex would, based on this hierarchical representation viewpoint, 

be predicted to cause judgements of prior occurrence to be based on the lower level 

feature-based representations of the stimuli still available earlier in the visual stream 

(McTighe et al., 2010). These feature-based representations would be more susceptible 

to interference as specific features of an object, for example its colour or shape, are 

likely to overlap with those of other intervening stimuli creating feature ambiguity 

between stimuli (Bartko et al., 2007a,b; Romberg et al., 2012). In this way, perirhinal 

cortex lesions are proposed to induce ‘false memories’ or incorrect identification of a 

novel stimulus as familiar (McTighe et al., 2010; Romberg et al., 2012). Inconsistent 

with this interpretation are several studies that have shown that rats with perirhinal 

lesions do not reduce their exploration of novel objects in the sample phase of 

spontaneous object recognition tasks (Ennaceur et al., 1996; Aggleton et al., 1997; 

Winters et al., 2004; Barker et al., 2007; Mumby et al., 2007; Bartko et al., 2007a,b; 

Albasser et al., 2009; McTighe et al., 2010; Barker et al., 2011; Albasser et al, 2015). 
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Further, there are examples of rodent, monkey and human studies that indicate that 

perirhinal damage can spare zero-delay discrimination of complex visual stimuli while 

impairing recognition memory (Buffalo et al., 1999, 2000; Shrager et al., 2006; Davies 

et al., 2007; Albasser et al., 2010). Thus, further investigation is required into the 

specific nature of the recognition deficit caused by perirhinal lesions. 

1.7 Rationale for the following experiments  

As can be seen from the description of the various models postulating how regions of the 

medial temporal lobe interact to support different forms of memory, a consensus has not 

been reached on the nature of these systems interactions. This is true for even the most 

fundamental forms of memory, including recognition memory. It is important to clarify 

basic forms of cognitive processing before more complex processes can be 

experimentally addressed. Thus, the behavioural experiments in this thesis will focus on 

the simple principles of novelty and familiarity. 

The real advantage of the immediate-early gene imaging technique employed throughout 

the experiments described in this thesis is the incredibly high anatomical resolution that 

can be achieved. This allows for the assessment and comparison of regional neuronal 

activity between different behavioural conditions not only at the regional level, but also 

within regional subdivisions. This is important as even within a single brain region, 

efferent and afferent connections can vary dramatically along different axes. These 

topographical differences could account for discrepancies observed between lesion 

studies.  Thus, in combination with structural equation modelling, it will allow for the 

assessment of functional models of the medial temporal lobe with unparalleled 

resolution. In addition, this type of analysis can also be carried out in rats that have 

received lesions, thereby allowing for the assessment of network dynamics following 

damage to purported components of the network. Many models imply that the perirhinal 

cortex has a considerable impact on hippocampal functioning, and thus would predict 

that removal of the perirhinal cortex would cause dysfunction in hippocampal 

processing. There are models that predict the opposite pattern. These were the 

hypotheses I set out to test. 

As described in Section 1.5.2, Albasser et al., (2010b) found different modes of 

hippocampal-parahippocampal interactions when rats performed a recognition memory 

task (novel vs. familiar stimuli) or explored familiar objects. The aim of the experiment 

described in Chapter 3 was to replicate this dissociation and extend the findings by 
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including rats that had received lesions to the hippocampus.  In this way, the idea of 

functional interdependence between the hippocampus and perirhinal cortex could be 

tested behaviourally, at the level of regional activation and by assessing how network 

dynamics are affected by loss of the hippocampus.  

Based on the finding that novel or familiar stimuli alter the way in which regions of the 

medial temporal lobe interact, the aim of the experiment described in Chapter 4 was to 

vary the degree of familiarity of test objects in intact animals and assess if regional 

activations and interactions were altered by this associative change. This was 

accomplished with a recency, or temporal order, task. 

Chapters 5 and 6 focus on assessing if dysfunction occurs in the hippocampus due to 

loss of the perirhinal cortex, first in a novel context task (Chapter 5) and subsequently in 

a novel object based task (Chapter 6). Again, the impact of the lesions was tested at 

multiple levels; behaviourally, regionally and at a systems level. Throughout all of the 

experiments described in this thesis, the underpinning aim was to provide as highly 

resolute anatomical data as possible.  
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2 General Methods 

2.1 Overview 

Each of the experiments to be described in this thesis followed a similar progression of 

phases (Figure 2.1). This general protocol will be described here, followed by a 

description of the specificities of each experiment in the respective chapters. The rats 

involved in the experiments described in Chapter 4 are the only ones that did not receive 

surgical intervention before their behavioural training. Rats of Chapter 3 received 

lesions to the hippocampus and those of Chapters 5 and 6 received lesions to the 

perirhinal cortex. 

Rats performed a behavioural task followed by immunohistochemical visualisation of 

the protein product of the immediate early gene, c-fos. The number of Fos-positive cells 

were then quantified in various regions of interest within the brain based on the type of 

behavioural task. Finally, structural equation modelling was applied to the activity 

related Fos data.   

2.2 Animals 

In all experiments subjects were male, Lister Hooded rats (Rattus norvegicus; Charles 

River, UK or Harlan, UK). They were housed in pairs under diurnal conditions (12h 

light/12h dark). During behavioural testing they were food restricted so that they 

remained close to 85% of their free feeding body weight.  Water was available ad 

libitum throughout.  All experiments were performed in accordance with the UK 

Animals (Scientific Procedures) Act, 1986 and associated guidelines and approved by 

local ethical committees at Cardiff University. Where the rats were not naïve, a 

description of the behavioural tasks they had previously experienced will be outlined in 

the respective chapter.  
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Figure 2.1. General experimental progression. 

Graphic illustrating the general steps involved in each of the experiments to be described. 

2.3 Object related behavioural testing 

For all experiments, except that described in Chapter 5, behavioural testing took place in 

a bow-tie maze (Albasser et al., 2010a). 

2.3.1 Bow-tie maze  

The maze is made with steel walls and a wooden floor (Figure 2.2). The maze measured 

120mm long, 50cm wide and 50cm tall. Each end of the maze was triangular in shape 

with their apices joined by a 12cm corridor. In the middle of the corridor was an opaque 

sliding-door that divided the maze in half. Recessed in the floor, by the back wall of 

each triangular area, were two food wells 3.5cm in diameter and 2cm deep. These food 

wells were separated by a steel divider that projected 15cm into the maze from the centre 

of the back wall.   
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Figure 2.2. Bow-tie maze. 

Upper panel is a graphic of the test apparatus used for testing object recognition and object recency 

memory.  A sliding door in the centre divides the maze into two halves so that objects can be placed 

over the food wells in one half while the animal is completing the task in the other half. Upper panel 

adapted from Albasser et al. (2011a). Lower panel is a schematic of the bow-tie maze, with 

dimensions in centimetres. Lower panel adapted from Adapted from Albasser et al. (2010b). 

2.3.2 Objects 

When rats were tested in the bow-tie maze they were presented with different three-

dimensional junk objects, which varied in colour, shape, size and texture (Figure 2.3). 

Any object with an obvious scent was excluded. Every object had an identical duplicate 

and so if an object was to be presented twice in the same session a different copy could 

be used to avoid the possibility of odour marking. All objects were large enough to 

cover a food well but light enough to be displaced by a rat. All objects were cleaned 

with alcohol wipes after each session. 
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Figure 2.3. Example object set. 

Set of objects used for object recognition test in the bow-tie maze. 

2.3.3 Pre-training in the bow-tie maze 

This phase took seven days and by its completion all rats would run from one side of the 

maze to the other and displace objects covering a food well in order to access food 

rewards. Day one: several 45mg sucrose pellets (Noyes, Lancaster, NH, USA) were 

spread out over the floor of the maze to encourage exploration. Rats were placed into the 

maze in their home-cage pairs for 20 minutes and allowed to freely explore and consume 

the sucrose pellets. Day two: sucrose pellets were placed only around the food wells and 

each rat was placed in the maze individually for 10 minutes. Day three: initially, one 

sucrose pellet was placed in each of the food wells. Individual rats were placed in the 

maze and the food wells at opposite ends of the maze were alternately re-baited for 10 

minutes to encourage the rats to move between these two end areas. Days four to seven: 

the sliding door that divided the maze into two separate areas was introduced. 

Additionally, small pairs of objects were placed to partially cover the sucrose baited 

food wells. Once a rat had collected the sucrose pellets from both food wells on one side 

of the maze the central door was lifted to allow access to the other side of the maze 

where further objects covered baited food wells. This process was continued with the 

objects covering increasingly more of the food wells until the rats would displace the 

objects when they completely covered the food wells. Pre-training was complete when 

the rats would run from one side of the maze to the other as soon as the central door was 

raised. The four pairs of objects used during pre-training were not used in the subsequent 

experiments. 
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2.3.4 Behavioural testing 

This will be described in the respective chapters. 

2.3.5 Analysis of behaviour 

The test phases of all object based experiments were video-recorded and object 

exploration was timed by an experimenter unaware of the surgical history of the 

individual rats. Object exploration was defined as directing the nose at a distance <1cm 

from the object with the vibrissae moving, and/or touching it with the nose or paws. 

Behaviour that did not count as exploration included when rats sat on the object, if they 

used the object to rear upward with their nose pointing at the ceiling, or chewing the 

object. From these timings, two measures of discrimination were calculated. Index D1 is 

the amount of time spent exploring the novel (or relatively less familiar) object minus 

the time spent exploring the familiar (or relatively more familiar) object. The 

‘cumulative D1’ is the sum of the D1 scores across all 20 trials. The second measure, 

D2, takes into account differences in total exploration times as D1 is divided by the total 

amount of exploration given to both objects (Ennaceur & Delacour, 1988). Thus, the D2 

ratio can fall between -1 and +1.  If the ratio is positive, the rat exhibits a preference for 

novel objects. The ‘updated D2’ is the D2 score recalculated after each trial. 

2.4 Perfusion 

Following completion of the test phase in all of the experiments, rats were placed in a 

dark holding room for 90 minutes (in experiments where training sessions had taken 

place, the rats had previously been placed in the same dark holding room after each 

training session). This interval was selected as previous studies have shown that 

expression of Fos, the protein product of c-fos, peaks between 60 and 120 minutes after 

the inducing event (Bisler et al., 2002; Zangenehpour & Chaudhuri, 2002).  They were 

then given a lethal overdose of sodium pentobarbital (60mg/kg, Euthatal, Rhone 

Merieux) and transcardially perfused with 0.1M phosphate-buffered saline (PBS) 

followed by 4% paraformaldehyde in 0.1M PBS (PFA). Brains were removed from the 

skull, postfixed in PFA for 4 hours, and then incubated in 25% sucrose at room 

temperature overnight on a stirrer plate.    

2.5 Sectioning and histology 

The brains were sectioned in the coronal plane into 40µm sections using a freezing 

microtome (Leica, SM2400). A series of 1 in 4 sections was collected in PBS and the 
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remaining three series were collected in cryoprotectant (30% w/v sucrose, 1% w/v 

polyvinyl pyrrolidone and 30 % v/v ethylene glycol dissolved in PBS) and stored at         

-20⁰C until further processing was required.  

The series collected in PBS were subsequently mounted onto double gelatin-subbed 

glass slides. Sections were allowed to air dry for at least 48 hours to ensure they had 

adhered to the slides and were then stained with cresyl violet, a Nissl stain. The cresyl 

violet stain was made by dissolving 0.5g cresyl violet and 1.211g sodium acetate in 1L 

distilled water (dH2O) with 0.425ml 5M formic acid. This was stirred for 48 hours and 

filtered before use. The sections were first hydrated in a series of two minute washes in 

decreasing concentrations of alcohol, followed by two minutes in dH2O. The sections 

were then stained for 2-5 minutes in the cresyl violet stain, followed by 30 seconds in 

dH2O. The sections were again dehydrated in a series of increasing concentrations of 

alcohol, cleared in xylene and coverslipped using the mounting media, DPX (Thermo 

Scientific, UK).  

2.6 Lesion analysis 

Based on the examination of the cresyl stained series of sections using an upright bright-

field microscope, the extent of the hippocampal lesion in each hemisphere (Chapter 3) 

was drawn onto corresponding coronal plates from a rat brain atlas (Paxinos & Watson, 

2005), from bregma -2.12mm to – 6.80mm. These images were then scanned and the 

area of damage calculated using the image analysis software, ANALYSIS^D (Soft-

Imaging Systems, Olympus).  

The extent of the perirhinal cortex lesions (Chapters 5 and 6) were also examined in 

cresyl stained sections using an upright bright-field microscope. One hemisphere in each 

brain was designated to be analysed for Fos expression while the other was eliminated 

from the study. This was due to the relatively common presence of small amounts of cell 

disruption in the temporal regions of the hippocampal subfield, CA1, in one hemisphere 

caused by the lesions to the perirhinal cortex. A hemisphere was excluded from the 

study if there was any evidence of cell disruption was seen in more than one section. 

Brains that suffered damage to both hippocampi were completely excluded from the 

study. The extent of the lesions in both hemispheres were drawn onto corresponding 

coronal plates from the rat brain atlas (Paxinos & Watson, 2005), from bregma -2.80mm 

to – 6.72mm. These images were then scanned and the area of damage calculated using 

cellSens Dimension Desktop, version 1.12 (Olympus Corporation).  
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2.7 Immunohistochemistry 

Another 1 in 4 series from each brain was immunohistochemically stained for the 

protein, Fos. This was carried out on free-floating sections. Tissue sections from one 

animal from each experimental group was processed concurrently in the same reaction 

vessel to decrease variation. The sections were washed six times in PBS to remove the 

cryoprotectant. Sections were then washed in 0.2% Triton-X 100 in 0.1M PBS (PBST), 

once in 1% H2O2 in PBST (to block endogenous peroxidases), then four further times in 

PBST. Sections were then incubated in a blocking solution of 3% normal goat serum 

(NGS) in PBST for one hour followed by the primary antibody solution; rabbit-anti-c-

fos and 1% NGS  diluted in PBST (see Table 2.1 for dilutions and vendors), for 48 hours 

at 4⁰C. Sections were then washed four times in PBST, and incubated in the secondary 

antibody solution; biotinylated goat-anti-rabbit (1:200; Vector Laboratories) diluted in 

1.5% normal goat serum in PBST for 2 hours at room temperature. Sections were 

washed four times in PBST. They were then incubated in avidin-biotinylated horseradish 

peroxidase complex in PBST (Elite kit, Vector Laboratories) for 1 hour at room 

temperature. Sections were washed four times in PBST, and then twice in 0.05M Tris 

buffer (pH 7.4). All washes were 10 minutes unless otherwise stated. Finally, 

diaminobenzidine (DAB Substrate Kit, Vector Laboratories) was used as the chromogen 

to visualise the location of immunostaining. The reaction was stopped in cold PBS. The 

sections were mounted onto double gelatin-subbed glass slides and allowed to air dry for 

at least 48 hours, dehydrated in increasing concentration of alcohol washes, cleared in 

xylene and coverslipped using DPX as the mounting media.  

Table 2.1. Rabbit-anti-c-fos polyclonal antibodies. 

  
Dilution 

Factor 
Company Catalog number 

Chapter 3 1:15,000 Calbiochem, EMD Millipore PC38 

Chapter 4 1:3,000 Calbiochem, EMD Millipore Ab-5 

Chapter 5 1:15,000 Calbiochem, EMD Millipore PC38 

Chapter 6 1:10,000 Synaptic Systems 226 003 

Chapter 7 1:10,000 Synaptic Systems 226 003 

2.8 Image capture and analysis of Fos-positive cells 

For the experiments described in Chapters 3 and 4, images from each region of interest 

were captured from four consecutive sections (each 120µm apart) from both 

hemispheres of each brain. This was done using a 5x objective lens (numerical aperture 
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of 0.12) on a Leica DMRB microscope with an Olympus DP70 camera.  As the field of 

view was 0.84 x 0.63mm, cortical regions required one image per section to include all 

cortical lamina, while for the septal hippocampus multiple images were taken and 

combined (Microsoft Ice, Microsoft).  Using ANALYSIS^D software (Soft-Imaging 

Systems, Olympus Corporation), Fos-positive cells were quantified by counting the 

number of immunopositive nuclei (mean feret diameter of 4-20µm) stained above a 

grayscale threshold set 60-70 units below the peak grey value measured by a pixel 

intensity histogram.  

For the experiment detailed in Chapter 5, images of the regions of interest were captured 

and analysed as described above with one main difference; images were captured from 

six consecutive sections from one hemisphere per animal. This was due to the 

elimination of hemispheres due to the presence of small amounts of damage to caudal 

regions of the hippocampal subfield, CA1, caused by the lesions to the perirhinal cortex. 

The equivalent hemisphere (left or right) was also analysed in the corresponding surgical 

control (‘sham’) animal. 

Image capture for Chapter 6 was also carried out using the same Leica DMRB 

microscope with the 5x objective lens (numerical aperture of 0.12), however the camera 

was an Olympus DP73 and the associated software was cellSens Dimension, version 

1.8.1 (Olympus Corporation). The field of view was 1.4 x 1.1 mm. As described for 

Chapter 5, images were captured from six consecutive sections from one hemisphere per 

rat due to the common presence of small amounts of unilateral damage to the temporal 

region of CA1. Using cellSens Dimensions Desktop software, the number of Fos-

positive neurons were quantified by counting the immunopositive nuclei (diameter of 4-

20µm, sphericity of 0.1-1.0) stained above a grayscale threshold set 50-60 units below 

the peak grey value measured by a pixel intensity histogram. For each region of interest 

within an experiment the greyscale threshold was kept constant but was altered slightly 

between regions of interest (i.e. for one region of interest the grayscale threshold applied 

to all of the images was -55 whereas for another region the threshold applied to all 

images was -60). 

In all cases, a mean Fos count per region per brain was obtained by averaging the 

number of Fos-positive neurons in each image from that region. 
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2.9  Statistical analysis 

All statistical analyses were carried out using the programme SPSS, version 20.0 (IBM 

Corp, Armonk, NY, USA). Initially all behavioural and Fos expression data were 

checked for normality using the Shapiro–Wilk test in conjunction with examination of 

frequency histograms. Where data transformation was necessary it is detailed in the 

respective chapter.  

Group comparisons were made using a t-test or ANOVAs and simple effects were 

examined when a significant (p≤0.05) interaction was obtained. The homogeneity of 

variance of the between subjects variables was verified using Levene’s test. Mauchly’s 

test was employed to test for sphericity of the within subjects variables. If the variables 

were found to be non-spherical the Greenhouse-Gueisser epsilon was used (Howell, 

2011). Bivariate correlations were calculated using the Pearson product-moment 

correlation coefficient for inter-regional Fos-positive cell counts. The levels of the 

correlations were compared between the groups using Fisher's r-to-z transformation 

(Zar, 2010).   

The inter-regional correlation tables in each chapter show probability levels uncorrected 

for multiple comparisons because the individual correlations are of limited significance. 

Rather, the anatomical constraints on the structural equation modeling analysis and their 

overall fit indices help to compensate for the Type I errors inherent in the multiple 

correlations that comprise the model. Consequently, it is important that any model must 

match established patterns of connectivity between the regions of interest so that the 

number of potential models are constrained. 

2.10  Structural equation modelling 

Even though the mean number of Fos-positive neurons in a set of brain regions may 

appear to be unaffected by a behavioural condition or a lesion intervention, the 

underlying correlations between these same regions may be markedly different (e.g., 

Poirier et al., 2008). Thus structural equation modelling techniques were employed to 

assess whether the activity in one region directly affected another region and how these 

inter-regional relationships (“network dynamics”) might be altered by the behavioural 

task or a lesion. 

Standard regression tests if a single explanatory variable (e.g., X1) can be used to predict 

the values of a single dependent variable (e.g., Y), this type of relationship is depicted in 
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Figure 2.4A (Protzner & McIntosh, 2006). Multiple regression estimates the effects that 

several independent predictor variables have on a single dependent variable (Figure 

2.4B; Protzner & McIntosh, 2006), while path analysis can evaluate more complex 

relationships between a set of variables (Figure 2.4C). Path analysis is a structural 

equation modelling (SEM) technique, it uses multiple-equation regression models to 

assess potentially causal relationships between sets of observed variables in order to test 

if the relationship among these variables fits a theoretical structure. This type of analysis 

can help to explain how several variables are related to one another by developing a set 

of regression equations that best account for the mathematical relationships between 

them (Streiner, 2005). This set of equations is known as a model and is often represented 

graphically in a path diagram; an example is depicted in Figure 2.4C. In these path 

diagrams rectangles represent observed variables, while the circles represent the residual 

error associated with that observed variable (also known as disturbances). The residual 

errors represent the variance in the associated variable that cannot be accounted for by 

the inputs as set out in the model; this can include measurement error as well as any 

other influences that impact the values but that are not accounted for by the model 

(Hoyle, 2012). The residuals are not always depicted in path diagrams but are assumed 

to be accounted for. The arrows between the observed variables represent the 

relationship between those two variables and is known as a path (giving the technique its 

name; Streiner, 2005). This technique also makes it possible to test the potential 

direction of effects between variables (Schumacker & Lomax, 2010); for example, given 

two variables, X1 and X2, does X1 influence the values of X2 or does X2 influence X1. 

Setting out these relationships based on a hypothesis is known as model specification 

(Schumacker & Lomax, 2010). 

 

Figure 2.4. Depiction of relationships tested in regression, multiple regression and 

path analysis. 

Schematic depictions of (A) standard regression, (B) multiple regression and (C) a set of hypothesised 

relationships between variables (a model) that can be tested using path analysis. 
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Using the example in Figure 2.4C, path analysis can be used to test whether variable X1 

has an effect on X2 and X4, and simultaneously if X2 and X4 have an effect on the values 

of X3. The variable, X1, is termed an exogenous variable as it has only outputs and no 

inputs while the others are endogenous variables as they have inputs set out in the 

model. This method can be thought of as testing if each endogenous variable within the 

hypothesised model can be predicted by its inputs. Exogenous variables do not have 

residual errors associated with them as their values are not accounted for by the model 

(Streiner, 2005). The relationships between the variables, (a, b, c, and d) are parameters 

to be estimated; these are known as path coefficients and are analogous to regression 

coefficients in multiple regression (Hoyle, 2012). However before a model can be 

estimated, the identification problem must be addressed (Schumacker & Lomax, 2010). 

Models can only be tested if they are ‘identified’; i.e., if there is only one possible 

solution. A necessary criterion for a model to be identified is that the number of 

parameters to be estimated are fewer than the number of distinct values in the sample 

variance-covariance matrix (Figure 2.5B). Again, to take the example in Figure 2.4C, 

there are four observed variables, thus, the dataset would consist of four sample 

variances (the measure of spread of data within one variable) and 6 sample covariances 

(the measure of how two variables change together) for a total of 10 distinct sample 

parameters (Figure 2.5). The model requires estimation of four path coefficients, three 

equation error variances and one independent variable variance, giving a total of eight 

parameters to be estimated. Subtracting the number of parameters to be estimated from 

the distinct sample parameters give the degrees of freedom associated with the model 

(Schumacker & Lomax, 2010).  
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Figure 2.5. Variance and covariance in a dataset. 

(A) Depiction of an example data set in which the variance associated with each variable is depicted 

by red double headed arrows and all of the covariances between variables are shown by blue dashed 

lines. (B) Example variance-covariance matrix. 

 

The next step is model estimation. The path coefficients are estimated by a series of 

layered multiple regression analyses. For the model in Figure 2.4C two layers of 

regression are required; two standard regressions are calculated to estimate if X1 can 

predict X2 and if X1 can predict X3. The second layer of analysis is a multiple regression 

where X2 and X3 are the predictors and X4 is the dependent variable (Hoyle, 2012). The 

model depicted above can be defined by a regression lines with formulae:  

X2 = aX1 + e1 

X4 = cX1 + e3 

X3 = bX2 + dX4 + e2 

The SEM software package, SPSS AMOS version 20.0 (IBM Corp, Armonk, NY, USA) 

was used to compute the path analyses presented in this thesis. The parameters were 

estimated using maximum likelihood estimation. This type of estimation is iterative; 

each parameter is estimated separately in each equation to meet the least squares 

criterion of minimised residual errors (Hoyle, 2012; Schumacker & Lomax, 2010). 

This estimation method aims to find values for the path coefficients that, given the 

model, maximise the likelihood of observed data, or in other words, minimise the 

difference between the observed and estimated data. Maximum likelihood estimation 

was chosen as method of estimation as it is recommended for use with smaller sample 

sizes and it allows the software to estimate missing data points and (Arbuckle, 2011). 
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Estimated path coefficients are commonly divided by their standard deviation in order to 

give standardised partial regression coefficients (Schumacker & Lomax, 2010); 

standardised path coefficients are presented in this thesis. Once the path coefficients 

have been estimated, the estimated regression equations are used to generate predicted 

variances and covariances of the variables. The predicted (implied) variance-covariance 

matrix can then be compared to the actual observed (sample) variance-covariance matrix 

(Figure 2.5B) in order to assess if the model (set of regression equations) could have 

produced the observed data set. 

Path analysis estimates the way in which observed variables influence one another after 

a model structure has been hypothesised; it does not however, suggest a model structure 

(Schumacker & Lomax, 2010). For this reason, all models tested were based on well-

established anatomical connections (Witter et al., 2000; Furtak et al., 2007; Van Strien et 

al., 2009). In these anatomical models the path coefficients can be considered to be 

estimates of ‘effective connectivity’ - the extent to which one region directly influences 

the other (Protzner & McIntosh, 2006). Additional assumptions of this method are: the 

independence of observations; that the endogenous variables (those that have inputs set 

out in the model) are measured on a continuous scale; that the relationships between the 

variables are linear; and, that the observed variables have multivariate normal 

distribution (Streiner, 2005; Arbuckle, 2011).  

Following estimation an anatomical model was tested; each model was assessed based 

on how well the implied variance-covariance matrix replicates the sample variance-

covariance matrices of the observed data (Schumacker & Lomax, 2010). This criterion is 

summarised by the χ2 statistic. A model with good fit has a non-significant χ2 and the 

ratio of χ2 to the degrees of freedom is < 2 (Tabachnick & Fidell, 2001). If these criteria 

are met the implied variance-covariance matrix does not differ significantly from that of 

the sample. Two further goodness of fit indices are presented in this thesis; the 

comparative fit index (CFI) and the root mean square error of approximation (RMSEA). 

These were chosen as they have been shown to be most applicable for small sample 

sizes (Fan & Wang, 1998; Hu & Bentler, 1998). 

The CFI index is based on a baseline comparison to an independence model in which 

there is no relationship (path) between any of the regions. This type of independence 

model has the worst possible fit (0) and so a higher CFI value indicates that the specified 

model is different from the independence model and as such has better fit;  a CFI >0.9 is 

considered acceptable. The RMSEA index accounts for parsimony in the model as it 
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estimates the square root of the mean lack of fit per degree of freedom; an RMSEA <0.1 

is considered acceptable (Tabachnick & Fidell, 2001). In order to ensure that the model 

fit statistics remained robust with small sample size each model contained at least as 

many cases as the number of variables to be estimated (Bollen & Long, 1992; Wothke, 

1993). Additionally, the squared multiple correlation (R2 or coefficient of determination) 

is presented for each endogenous brain region in the models. This value is a measure of 

the proportion of its variance that can be explained by its inputs within the model 

(Arbuckle, 2011). If the indices of fit did not reach acceptable levels then the specified 

model was not supported by the sample data and the model was modified. If the criteria 

were met then the specified model was supported by the data (Schumacker & Lomax, 

2010). 

Connections within the medial temporal lobe are complex and often reciprocal (Witter et 

al., 2000; Furtak et al., 2007; Van Strien et al., 2009). Where reciprocal projections are 

known to occur the paths were tested in both directions and the strongest one is 

presented. The aim here is to reproduce the prevailing flow of activity and it is 

appreciated that these models are anatomically simplistic and cannot capture the entire 

multifaceted interactions that occur between these sites. A direction of effect cannot be 

inferred between some anatomical regions as the fit of the models did not change when 

the path direction was reversed; this is indicated in the figures by a double headed arrow. 

The data from different groups were then compared on the same network models by a 

stacking procedure in order to test for group differences in the path coefficients within 

the same overall model. For stacking, the path coefficients of all paths in the model are 

constrained so that they must have the same value across all groups; this is termed the 

structural weights model. If the model fit when the paths are unconstrained is 

significantly worse than when all paths are free to have different values for the different 

groups, as determined by a χ2 difference test, this indicates that the strength of at least 

some of the paths differ among the groups (Protzner & McIntosh, 2006; Schumacker & 

Lomax, 2010). Subsequently, each path can be independently unconstrained and the fit 

compared to the structural weights model, again using a χ2 difference test. If the fit of the 

model is significantly improved by unconstraining a path, it can be concluded that the 

strength of this path is different for the groups in question. Furthermore, Protzner and 

McIntosh (2006) presented findings that indicate that differences between groups are 

detectable and valid “regardless of absolute model fit” when the stipulated model is 

based on known anatomical connections.  
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3 Mapping Parahippocampal 
Systems for Recognition and 
Recency Memory in the Absence of 
the Rat Hippocampus 

3.1 Introduction 

Medial temporal lobe structures are vital for recognition memory, the ability to 

discriminate novel from familiar stimuli. Foremost in importance amongst these 

structures is the perirhinal cortex; evidence for its integral role in recognition memory 

has been provided by lesion studies in the monkey and rat (Zola-Morgan et al., 1989, 

Mumby & Pinel, 1994, Murray, 1996; Brown & Aggleton, 2001; Winters et al., 2008; 

Warburton & Brown, 2010) and neuronal recording studies in the monkey and rat (Fahy 

et al., 1993; Zhu et al., 1995a; Xiang & Brown, 1998). Functional heterogeneity between 

the hippocampus and perirhinal cortex is supported by lesion studies in which rodents 

successfully identify novelty in the absence of the hippocampus (Aggleton et al., 1986, 

Winters et al., 2004, Forwood et al., 2005, O’Brien et al., 2006; Albasser et al., 2009). 

Additionally, a set of studies has demonstrated that fornix lesions, which disconnect the 

hippocampus, differentially affect recall while sparing novelty detection when tested 

simultaneously in the rat (Eacott & Easton, 2007, Eacott et al., 2009; Easton & Eacott, 

2010). 

There remains, however, considerable uncertainty about the contributions of the 

hippocampus to recognition memory.  While many studies (outlined above) report no 

apparent effect of hippocampal lesions, such lesions have been shown to sometimes 

impair behavioural tests of object recognition (Clark et al., 2000; Broadbent et al., 2004, 

2010; Prusky et al., 2004; Cohen et al., 2013).  One possible explanation for the frequent 

lack of evident hippocampal lesion deficits is found within those two-process models of 

recognition memory which assume that the perirhinal cortex is independently 

responsible for familiarity-based recognition (e.g., Aggleton & Brown, 1999; Norman & 

O’Reilly, 2003; Diana et al., 2007). This particular two-process view contrasts with 

other models, e.g., where interactions between perirhinal cortex and hippocampus more 

broadly support recognition (Wixted & Squire, 2011) or hierarchical models that 

emphasise the perceptual role of the perirhinal cortex (Cowell et al., 2010).   
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Human studies also provide contradictory evidence for the role of the hippocampus in 

recognition memory. Some reports provide evidence of a functional dissociation 

consistent with dual process models (Davachi et al., 2003; Henson et al., 2003; 

Ranganath et al., 2004; Diana et al., 2007; Staresina et al., 2012). Other studies support 

the single process view as some patients with focal hippocampal damage can have 

similar deficits in both forms of recognition memory (Stark et al., 2002; Manns et al., 

2003). Thus, debate continues over the relationship of these putative mnemonic 

processes and their anatomical substrates (Aggleton and Brown, 2006; Diana et al., 

2007; Wixted & Squire, 2011; Aggleton, 2012).  The present study directly examined 

the importance of these interactions by measuring the impact of hippocampal lesions on 

perirhinal cortex network activity associated with recognition memory. 

Expression of the immediate-early gene (IEG) c-fos provides a signal of neuronal 

activity strongly associated with recognition memory.  For example, perirhinal c-fos 

activity increases when animals are passively shown novel stimuli (Zhu et al., 1995b, 

1996; Wan et al., 1999, 2004). In the same studies, hippocampal c-fos changes were not 

observed.  Increased perirhinal c-fos expression is also seen when rats actively explore 

and discriminate novel from familiar objects (Albasser et al., 2010b), with this perirhinal 

c-fos upregulation being required for stable recognition memory (Seoane et al., 2012).  

Active object exploration also reveals networks of c-fos activity that link 

parahippocampal sites with the hippocampus, patterns that vary depending on whether 

stimuli are novel or familiar (Albasser et al., 2010b).  The functional significance of 

these hippocampal activations for recognition memory remains, however, unknown.  

To test the involvement of the hippocampus in modifying perirhinal cortex activity, rats 

with excitotoxic lesions of the hippocampus and control rats with sham surgeries 

explored pairs of objects (one novel, one familiar) over multiple recognition trials 

(Novel Object condition). Two other groups (hippocampal and sham lesions) only 

explored objects made familiar by prior exposure over previous sessions, so testing 

recency memory (Familiar Object condition). The initial question was whether the 

hippocampal lesions affected either recognition or recency memory performance.  The 

next question was whether the hippocampal lesions altered c-fos activity levels in the 

perirhinal cortex (areas 35, 36) and lateral entorhinal cortex.  Then, using the c-fos 

activity data, networks of inter-correlated parahippocampal sites associated with either 

recognition memory or recency memory were derived with structural equation 

modelling.  The impact of hippocampal lesions on these networks was then assessed. 
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The final question concerned the potential role of the entorhinal cortex in regulating how 

hippocampal subfield activity is differentially affected by novel or familiar objects.     

3.2 Materials and Methods 

3.2.1 Animals 

Subjects were 42 male, Lister Hooded rats (Harlan). They were housed as described in 

general methods section 2.2. Rats were approximately 12 months old at the beginning of 

the c-fos imaging study.  These animals had previously received either hippocampal 

lesions (n=22) or sham surgeries (n=20).  They had been  trained on a variety of 

geometric discriminations in a water maze, a spatial alternation task in a T-maze and a 

biconditional learning task in boxes (Albasser et al., 2013a).   

3.2.2 Surgery 

The rats were approximately three months old at the time of surgery. The surgeries were 

carried out by Dr. M. Horne. Twenty-two rats received bilateral hippocampal lesions, 

while 20 rats served as surgical controls.   Anaesthesia was induced in all animals with a 

mixture of oxygen and isoflurane gas. They were then placed in a stereotaxic frame with 

the incisor bar set at -3.3mm to the horizontal plane. Analgesia in the form of 0.1mg/kg 

Metacam (Boehringer Ingelheim Vetmedica, Germany) was administered 

subcutaneously. To expose the skull, a midline sagittal incision was made in the scalp 

and the skin was retracted. A craniotomy was made above the injection sites and dura 

cut to expose cortex. The hippocampal lesions  (n = 22) were made by injections of 

ibotenic acid (Biosearch Technologies, San Rafael, CA) diluted to 63mM in PBS (0.1M, 

pH 7.4). The ibotenic acid was administered via a 2µm Hamilton syringe (gauge 23, 

outside diameter 0.63 mm) connected to a microinjector (Kopf Instruments, Model 

5000) set at a rate of 0.1µL/min and subsequent diffusion time of two minutes. The 

animals received 14 injections to each hemisphere (for co-ordinates and volumes see 

Table 3.1). The surgical control animals (n = 20) were treated in the same way until the 

dura was exposed.  While nothing was infused into the brain, the dura was pierced 14 

times per hemisphere with a 25-gauge Microlance needle (Becton Dickinson, Drogheda, 

Ireland).  
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Table 3.1. Stereotaxic coordinates and volume of ibotenic acid for lesions of the 

hippocampus. 

Anteroposterior Mediolateral Dorsoventral Volume (µL) 

-5.4 ±4.2 -3.9 0.10 

-5.4 ±5.0 -6.1 0.08 

-5.4 ±5.0 -5.3 0.08 

-5.4 ±5.0 -4.5 0.09 

-4.7 ±4.0 -7.2 0.10 

-4.7 ±4.0 -3.5 0.05 

-4.7 ±4.5 -6.5 0.05 

-3.9 ±2.2 -3.0 0.10 

-3.9 ±2.2 -1.8 0.10 

-3.9 ±3.5 -2.7 0.10 

-3.1 ±1.4 -3 0.10 

-3.1 ±1.4 -2.1 0.10 

-3.1 ±3.0 -2.7 0.10 

-2.4 ±1.0 -3.0 0.05 

The coordinates are given as distance (mm) from bregma. 

3.2.3 Apparatus 

Testing took place in a bow-tie maze as described in the General Methods section 

(Figure 2.2).  

3.2.4 Objects 

A total of 147 different junk objects were used. Every object had an identical duplicate. 

These objects were then equally divided into seven sets of 21 pairs. All objects were 

large enough to cover a food well but light enough to be displaced by a rat. All objects 

were cleaned with alcohol wipes after each session. 

3.2.5 Behavioural testing 

3.2.5.1 Animal groups 

The animals were divided between two behavioural conditions, creating four groups. 

The animals that received hippocampal lesions were assigned to either the Novel Object 

condition (n=11; HPC Novel) or the Familiar Object condition (n=11; HPC Familiar). 

Likewise, the surgical control or ‘sham’ animals were divided between the Novel Object 
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condition (n=10; Sham Novel) and the Familiar Object condition (n=10; Sham 

Familiar). 

3.2.5.2 Pre-training 

As described in general methods section 2.3.3. 

3.2.5.3 Shared Protocol for session 1 

Behavioural testing was carried out by Eman Amin. The initial session was identical for 

all four groups.  A single 45mg sucrose pellet was placed in each food well, i.e., under 

every object.  Session 1 consisted of 21 trials of 1 min each. At the start of the session 

the rat was placed on one side of the maze which contained a single object (object A; 

trial 0).  The rat displaced the object to retrieve the single sucrose pellet (Figure 3.1). 

After 1 min the experimenter opened the door and the rat ran to the other side of the 

maze to begin trial 1, where an identical copy of the now familiar object A was 

presented along with a novel object (object B). The rat was allowed to freely explore 

these objects for 1 min. The door was again opened and the rat would run to the other 

side of the maze to begin trial 2, where a copy of the now familiar object (object B) and 

a novel object (object C) covered the two food wells (Figure 3.1).  Trial 3 consisted of 

familiar object C and novel object D. This running recognition protocol was continued 

with pairs of objects (one novel, one familiar), covering the baited food wells, until 21 

trials were completed. Placement of the novel object on the left or right was 

counterbalanced.  

 

Figure 3.1. General procedure showing the order of presentation of objects. 

All objects are rewarded (+).  Red arrows show the directions of the rats’ movements while blue 

arrow indicates progression through successive trials. Group Novel: black letters represents novel 

objects and grey letters the familiar objects.    
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3.2.5.4 Novel Object condition 

Both the HPC Novel and Sham Novel groups received thirteen sessions that were run as 

described for Session 1 (Figure 3.1). Consequently, in each trial the animals were 

allowed to explore one novel object and one familiar object (familiar as its copy was 

seen in the preceding trial) as described above.  All objects covered a single sucrose 

pellet. The first twelve training sessions were given over six consecutive days, i.e., two 

sessions per day.  New sets of objects were used for each of the first six sessions and 

then used once again in Sessions 7-12.  The object order and object pairings were not 

repeated. The final test session was on day seven. The protocol was exactly as described 

above, except that a novel set of twenty-one object pairs was used (Set 7).  As before, 

each trial comprised one novel object and one object made familiar by its use on the 

previous trial. 

3.2.5.5 Familiar Object condition 

The test protocol for both familiar groups (HPC Familiar, Sham Familiar) remained the 

same as described for Session 1. In contrast to the Novel Object condition, the same 

twenty-one pairs of objects were used in all twelve training sessions, though in different 

orders. This same set of objects (Set 7) was then used again for the final test (Session 

13).  Consequently, the objects used in every session for the Familiar Object condition 

were the same (Set 7) as those used in just the final test session (Session 13) of the 

Novel Object condition. This comparison task was intended to match the sensorimotor 

demands of the Novel Object condition while reducing the impact of object novelty. 

On completion of their respective test sessions the rats from both conditions were placed 

in a dark room for 90 minutes and then perfused as described in the General Methods 

section 2.4.  

3.2.6 Analysis of behaviour 

As described in general methods section 2.3.5. 

3.2.7 Lesion analysis 

As described in general methods section 2.6. 

3.2.8 Immunohistochemistry 

As described in general methods section 2.7. 
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3.2.9 Regions of interest  

All of the regions of interest (ROI) sampled for c-fos analysis are depicted in Figure 3.2. 

The parahippocampal regions were mid and caudal levels of areas 35 and 36 in the 

perirhinal cortex (PRH; see Burwell, 2001); as well as area Te2, and lateral entorhinal 

cortex (LEC) adjacent to caudal PRH (from AP -4.80 to -5.52). Area Te2 was included 

as it is a key source of visual inputs to perirhinal cortex (Burwell & Amaral, 1998b; 

Agster & Burwell, 2009) and because of prior evidence of the importance of this area in 

the rat brain for visual recognition (Zhu et al., 1996; Wan et al., 1999; Ho et al., 2011). 

In the sham surgical groups only, additional Fos-positive cell counts were made in the 

septal hippocampus (dentate gyrus, CA1 and CA3; from AP -2.52 to -3.24; Strange et 

al., 2014). The septal hippocampus was chosen because projections from the region of 

LEC analysed here preferentially terminate in septal hippocampus (Ruth et al., 1988; 

Dolorfo & Amaral, 1998), consistent with the finding that subfields in this part of the 

hippocampus can be integrated into parahippocampal IEG activity models with good fit 

(Albasser et al., 2010b).  

Reflecting the different patterns of inputs from the cortical layers of the lateral 

entorhinal cortex to the various hippocampal subfields, separate counts were made in 

layers II, III and V+VI (combined) of the entorhinal cortex.  These distinctions follow 

the finding that neurons in LEC layer II project to the dentate gyrus and CA3 while 

neurons in LEC layer III project to CA1 (Steward & Scoville, 1976; Amaral, 1993; 

Insausti et al., 1997).  There is, however, some inconsistency in the literature regarding 

the division between layers II and III of the LEC. Some describe layer II as comprising a 

cell dense superficial IIa and a deeper, slightly less dense IIb (Swanson, 1992). Others 

describe layer IIb as being the superficial component of layer III (Insausti et al., 1997; 

Dolorfo & Amaral 1998). The latter definition is used in the present study as this most 

closely matches the sources of the contrasting inputs to the different hippocampal 

subfields (Ohara et al., 2013).    
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Figure 3.2. Regions of Interest. 

Coronal sections depicting regions of interest: CA1, CA3 and dentate gyrus (DG) from the septal 

hippocampus, areas 35 and 36 for the mid and caudal perirhinal cortex, area Te2 and lateral entorhinal 

cortex (LEC). The numbers below refer to the approximate distance in mm from bregma. Adapted 

from the atlas of Paxinos & Watson (2005). 

3.2.10 Image capture and analysis of c-Fos activation 

As described in general methods section 2.8. 

3.2.11 Statistical analysis 

3.2.11.1 Behavioural data 

Behavioural data ware analysed using an ANOVA with two between-subjects factors 

[surgical group (Sham, Hippocampal lesion) and behavioural condition (Novel Object, 

Familiar Object)].  Separate analyses examined cumulative D1, updated D2 and total 

cumulative exploration scores for the final test session as the measures are not 

independent.  One-tailed, two-sample t-tests were calculated for the cumulative D1 and 

updated D2 scores after the final test trial of the test session to determine if 

discrimination performance was significantly above chance level (zero) for each group.  

3.2.11.2 Fos data 

To analyse group differences (Sham vs. Lesion; Familiar Objects vs. Novel Objects) in 

the numbers of c-fos activated cells in the parahippocampal cortices, a two between-

subjects factor (Lesion type and Familiar/Novel objects) and one within-subject factor 

(Region of Interest) ANOVA was calculated. This analysis was carried out separately 

for three regional groupings: i) divisions within perirhinal cortex, ii) areas Te2 and LEC, 

and iii) the various cortical layers of the LEC. The Fos counts in the various 

hippocampal subfields (sham groups only) were compared using a one between 

(Familiar/Novel objects) by one within-subject (ROI) ANOVA.  
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Pearson product-moment correlation coefficients were calculated for the Fos-positive 

cell counts in the various parahippocampal sites, as well as with the D2 discrimination 

ratio. The D2 index was preferred as it better compensates for individual differences in 

overall levels of object exploration. The levels of the correlations obtained between 

perirhinal cortex and D2 for each of the behavioural groups were also compared between 

the groups using Fisher's r-to-z transformation (Zar, 2010).   

3.2.12 Structural equation modelling 

As described in general methods section 2.10. 

3.3 Results 

3.3.1 Lesion analysis 

Three animals were eliminated from analysis due to inadequate lesion size; two from 

group HPC Novel and one from group HPC Familiar. A further animal was removed 

from group HPC Familiar due to extensive cortical damage. Thus, final group numbers 

were as follows: HPC Familiar, n = 9; HPC Novel, n = 9; Sham Familiar, n = 10; Sham 

Novel, n = 10.  

Figure 3.3 illustrates the cases with the largest and smallest hippocampal lesions in the 

HPC Familiar and HPC Novel groups. Assessments of total damage to the hippocampus 

(excluding the subiculum) ranged from 35% to 79% in the HPC Familiar group (median 

= 61%) and from 29% to 73% in the HPC Novel group (median =50%).  It should be 

noted that these percentages underestimate the amount of actual tissue loss as they are 

based on coronal sections and so do not take into account the additional degree of 

hippocampal shrinkage in the anterior-posterior plane, which was clearly evident in all 

cases. The overall percentage of damage to septal, intermediate, and temporal 

hippocampus did not distinguish the two groups (F1,16 = 2.75, p = 0.12), although there 

was proportionately more tissue loss in the septal than temporal hippocampus across 

both groups (F2,32 = 8.65, p = 0.001).  The group by region interaction was close to 

significant (F2,32 = 3.21, p = 0.054) as there was a tendency for the HPC Familiar group 

to suffer more tissue loss in the intermediate hippocampus. 

The only region to exhibit any consistent sparing in both groups was the most medial 

region of the septal dentate gyrus. In some cases this sparing extended laterally to 

encompass the most medial regions of septal CA1 and CA3. There were also typically 
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small amounts of sparing of dentate gyrus, CA1, and CA3 at the temporal pole of the 

hippocampus.  

 

Figure 3.3. Hippocampal lesion reconstructions. 

Diagrammatic reconstructions of the hippocampal lesions showing the individual cases with the 

largest (grey) and smallest (black) lesions for group HPC Familiar (left; n=9) and group HPC Novel 

(right; n=9). The numbers refer to the distance (in millimetres) from bregma (adapted from Paxinos & 

Watson, 2005). 

 

In six of the HPC Novel group, tissue damage extended ventrally to cause very small 

amounts of thalamic damage. In two cases there was partial bilateral damage to the 

laterodorsal nucleus (LD), three cases suffered unilateral damage to the lateral posterior 

nucleus, and the final case sustained unilateral damage to both LD and the lateral 

posterior nucleus, but in contralateral hemispheres. In five of the HPC Familiar group 

cases there was a very small amount of dorsal thalamic damage; one showed unilateral 

LD damage, three sustained bilateral LD damage and the last case had bilateral damage 

to LD accompanied by unilateral anteroventral nucleus damage. All rats displayed some 

cell loss and thinning in cortical regions overlying the hippocampus (Figure 3.3). This 
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cortical involvement varied and sometimes included motor cortex, primary 

somatosensory area and the parietal region of posterior association cortex, and 

dysgranular retrosplenial cortex.  

3.3.2 Behavioural testing 

Analysis of the cumulative recognition scores from the final session (Figure 3.4) showed 

the expected higher D1 discrimination indices for the Novel Object conditions than for 

the Familiar Object conditions (F1,34 = 5.13, p = 0.03) irrespective of lesion status.  

There was no effect of the hippocampal lesions on these discrimination scores across the 

two conditions (F < 1) and no lesion by object type interaction (F < 1).  All four groups 

performed above chance based on their cumulative D1 scores (HPC Familiar: 

t8 = 4.63, p = 0.002; HPC Novel: t8 = 8.71, p ≤ 0.001; Sham Familiar: t9 = 3.82, p = 

0.004; Sham Novel: t9 = 7.47 p ≤ 0.001; Figure 3.4), showing that the rats could not only 

distinguish novel from familiar (Novel Object condition) but could also distinguish 

between an object from the previous trial and one from all previous days (Familiar 

Object condition). 

 

Figure 3.4. Behavioural measures from the final session of the object recognition 

test. 

The graphs depict group performance as measured by: the cumulative D1 recognition index (left 

panel), the updated D2 ratio (middle panel), and cumulative exploration time for all objects (right 

panel). For D1 and D2, a score of zero indicates a failure to discriminate. All D1 and D2 scores are 

significantly above zero (one-sample t tests, all p < 0.01). * p < 0.05 Novel Objects compared to 

Familiar Objects. Data are presented as means ±SEM.   

 

Analyses based on the D2 index provided a similar pattern (Figure 3.4) except that the 

discrimination scores failed to differ significantly between the Novel and Familiar 

conditions (F1,34 = 3.01, p = 0.09).  As with D1, there was no evidence of a hippocampal 

lesion effect (F< 1), nor was there a lesion by condition interaction (F < 1). Once again, 
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all four groups performed above chance in this final session (HPC Familiar: 

t8 = 5.50, p ≤ 0.001; HPC Novel: t8 = 10.9, p ≤ 0.001; Sham Familiar: t9 = 4.03, p = 

0.003; Sham Novel: t9 = 9.59 p ≤ 0.001; Figure 3.4).  

Total levels of object exploration in the final session were also calculated (Cumulative 

Exploration, Figure 3.4). This measure was not affected by lesion (F < 1) or test 

condition (F1,34 = 3.09, p = 0.088), nor was there an interaction between these factors 

(F1,34 = 2.18, p = 0.15). Finally, correlation coefficients were calculated to assess if 

there was an association between lesion size at three levels of the hippocampus (septal, 

intermediate and temporal) and either of the discrimination measures (D1 and D2). No 

significant correlations were found (all p > 0.1) nor was there any indication that animals 

with smaller lesions discriminated better in either the Novel or Familiar conditions.  

3.3.3 Fos-positive cell counts 

3.3.3.1 Correlations with recognition performance (D2) 

The D2 recognition index correlated significantly with the Fos cell counts summed 

across the perirhinal cortex (areas 35 and 36 combined) for both the HPC Novel (r = -

0.70, p = 0.037) and the HPC Familiar (r = -0.81, p = 0.008) groups (Table 3.2).  In both 

cases the correlation was negative. The corresponding correlations for the remaining 

groups (Sham Novel: r = -0.46, p = 0.18; Sham Familiar: r = -0.30, p = 0.39) were not 

significant. Furthermore, comparisons made between these correlation levels were not 

significant, i.e., all p > 0.05.  When mid and caudal areas 35 and 36 were considered 

separately, all four subareas had a significant negative correlation with D2 in group HPC 

Familiar (all p < 0.05), as did mid area 35 in group HPC Novel (r = -0.74, p = 0.021).  

No other ROI in the four groups showed a significant correlation between D2 and Fos-

positive cell counts, nor did the D1 discrimination measure correlate significantly with 

any ROI. 

Table 3.2. Correlations of perirhinal activity with discrmination score. 

Group: 
HPC 

Familiar 

HPC 

Novel  

Sham 

Familiar  

Sham 

Novel  

Combined 

PRH Fos  

r-value -.813** -.696* -0.304 -0.457 

p-value 0.008 0.037 0.393 0.184 

Correlations between the Fos-positive cell counts from across all analysed perirhinal (PRH) sub-

regions with the discrimination performance (updated D2) for each group. The r-values are Pearson 

coefficients. * p < 0.05, ** p < 0.01, for two-tailed correlations. 
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3.3.3.2 Perirhinal cortex – comparison of Fos counts 

Comparisons across the four perirhinal sites (mid and caudal, areas 35 and 36) found no 

overall effect of hippocampal lesions (F < 1) on Fos positive cell counts (Figures 3.5, 

3.6A).  A hippocampal lesion effect was found, however, in the interaction with separate 

counts in the four areas (lesion by area F3,102 = 5.29, p = 0.002).  Simple effects analysis 

showed that this interaction largely arose from the Familiar Object condition as mid 

perirhinal areas often contained higher Fos counts in the Sham group than the 

corresponding HPC group, but this difference disappeared in the caudal perirhinal cortex 

(Figure 3.6A).  There was, in addition, an overall effect of ROI (F3,102 = 27.1, p < 0.001), 

reflecting the consistently lower levels of Fos expression in more caudal perirhinal 

cortex (Figure 3.6A). There was no overall effect of behavioural condition (Novel vs. 

Familiar Objects, F < 1), i.e., the Fos counts were not higher in the Novel Object groups.  

Likewise, there were no significant interactions with the two behavioural conditions. 

 

Figure 3.5. Representative photomicrographs of parahippocampal cortex. 

These sections depict Fos positive cells in cortical area Te2, caudal PRH composite areas 35 and 36 

and lateral entorhinal cortex (LEC) for groups HPC Familiar (A), HPC Novel (B), Sham Familiar (C) 

and Sham Novel (D). Scale bar: 200µm.   

Te2 

LEC 

36 

35 
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Figure 3.6. Parahippocampal Fos expression. 

(A) Graph depicting mean counts of perirhinal Fos-positive cells in all four groups in areas 35 and 36 

at mid- and caudal levels. (B)  Graph depicting mean counts of Fos-positive cells in cortical areas 

adjacent to perirhinal cortex; area Te2 and lateral entorhinal cortex (LEC). * p <0.05 compared to 

appropriate sham condition. Data are presented as means ±SEM 

3.3.3.3 Area Te2 and lateral entorhinal cortex – comparison of Fos counts 

There was an overall effect of hippocampal surgery (F1,34 = 4.32, p = 0.045) as the rats 

with lesions had lower Fos counts (Figures 3.5, 3.6B).  The surgical group by area 

interaction (F1,34 = 4.82, p = 0.035) reflected how this reduction in Fos counts after 

hippocampal surgery was essentially confined to area Te2 (Figure 3.6B).  This Te2 

reduction was only significant for the Familiar condition (simple effects F1,34 = 5.60, p = 

0.024).  There was no overall difference in the Fos counts for the Novel and Familiar 

Object groups (F < 1) and no interaction with this factor. 

Analysis of the cortical layers of LEC revealed no significant lesion effect (F < 1) or 

effect of behavioural condition (F1,34 = 2.57, p = 0.12) on the numbers of Fos positive 

cells in layers II, III or V+VI (Figure 3.7). There was also no interaction between these 

factors (F1,34 = 1.07, p = 0.31).   
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Figure 3.7. Lateral entorhinal cortex: laminar Fos expression. 

Graph depicts mean counts of Fos-positive cells in all four groups in cortical layer II, III and V + VI 

combined. Data are presented as means ±SEM 

3.3.3.4 Hippocampal subfields – comparison of Fos counts in Sham groups 

No significant group differences (Novel vs. Familiar Objects) were found in the Fos 

counts from the septal hippocampus (dentate gyrus, CA3 and CA1, F<1, Figure 3.8). 

There was also no evidence of a group by subfield interaction (F1,21 = 1.07, p = 0.36).  

 

Figure 3.8. Hippocampal Fos expression. 

Representative micrographs from coronal sections depict Fos positive cells in dentate gyrus (DG), 

CA3 and CA1 at the septal level of the hippocampus for groups Sham Familiar (A), Sham Novel (B). 

Scale bar: 200µm. (C) Graph depicts counts of Fos-positive cells for the two sham groups divided by 

subfield. Data are presented as means ±SEM 

3.3.4 Structural equation modelling 

The models were calculated using the correlations between the Fos counts found in the 

different medial temporal sites for the two groups with hippocampal lesions (Table 3.3) 

and the two groups with sham surgeries (Table 3.4). These tables of correlations present 

probability levels that are not corrected for multiple comparisons as the individual 
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correlations are of limited significance. More importantly, these same correlations 

provide the source data for the structural equation modelling, in which the fit of the 

overall model helps to compensate for Type 1 errors in the individual correlations that 

comprise the model.  Because of this same concern, it is important that any model must 

conform to established patterns of connectivity between the regions of interest, i.e., the 

number of potential models is constrained. 

 

Table 3.3. Inter-region correlations of Fos-positive cell counts in the two 

hippocampal lesion groups.

 

The top right diagonal matrix (darker grey) relates to data from HPC Novel object group while the 

bottom left diagonal matrix (lighter grey) relates to data from HPC Familiar object group. The r-

values are Pearson coefficients. Significant correlations are in bold. * p < 0.05, ** p < 0.01, *** p < 

0.001, for two-tailed correlations (uncorrected for multiple comparisons – see main text). Sites 

included: area Te2, area 35 and area 36 of the perirhinal cortex, and lateral entorhinal cortex (LEC; 

both as a whole and divided into cortical layers II, III and V+VI).  

Te2

Mid 

Area35

Mid 

Area36

Caudal 

Area35

Caudal 

Area36

Whole 

LEC

LEC 

Layer II

LEC 

Layer III

LEC 

Layers 

V+VI

r-value .636 .607 0.707* 0.684* 0.698* .019 .818** .937***

p-value .066 .083 .033 .042 .036 .960 .007 <0.001

r-value 0.818** 0.923*** 0.824** 0.669* .659 .214 .638 .816**

p-value .007 <0.001 .006 .049 .054 .580 .065 .007

r-value .661 0.963*** 0.848** 0.785* .461 -.012 .482 .731*

p-value .052 <0.001 .004 .012 .212 .975 .189 .025

r-value 0.758* 0.943*** 0.949*** 0.930*** .627 .191 .639 .766*

p-value .018 <0.001 <0.001 <0.001 .071 .623 .064 .016

r-value 0.774* 0.886** 0.882** 0.972*** .477 .072 .521 .671*

p-value .014 .001 .002 <0.001 .194 .853 .150 .048

r-value .533 .338 .264 .289 .446

p-value .140 .373 .492 .451 .229

r-value .023 -.326 -.394 -.336 -.129 .550 .233

p-value .953 .391 .294 .377 .740 .125 .546

r-value .540 .279 .184 .252 .421 .709* .910**

p-value .134 .468 .636 .514 .260 .032 .001

r-value .739* .788* .706* .761* .786* -.010 .497

p-value .023 .012 .033 .017 .012 .980 .173

LEC 

Layer III

LEC 

Layers 

HPC Familiar

LEC 

Layer II

Mid 

Area35

Mid 

Area36

Caudal 

Area 35

Caudal 

Area 36

Whole 

LEC

Te2

HPC Novel
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Table 3.4. Inter-region correlations of Fos-positive cell counts in the two sham 

lesion groups. 

 

The top right diagonal matrix (darker grey) displays data from the Sham Novel object group while the 

bottom left diagonal matrix (lighter grey) displays data from the Sham Familiar object group. The r-

values are the Pearson coefficients. Significant correlations are in bold. * p < 0.05, ** p < 0.01, *** p 

< 0.001, for two-tailed correlations (uncorrected for multiple comparisons – see main text). Sites 

included: area Te2, area 35 and area 36 of the perirhinal cortex, lateral entorhinal cortex (LEC; both 

as a whole and divided into cortical layers II, III and V+VI), and hippocampal subfields CA1, CA3 

and dentate gyrus (DG). 

3.3.4.1 Parahippocampal models  

Separate models with acceptable fit could be derived from all four groups (Figure 3.9).  

It was striking that the same structural model was optimal for all four groups, whether 

the hippocampus was intact or not, and whether the rats explored novel or familiar 

objects.  The only difference concerned the strengths of particular path coefficients.  

Starting from area Te2, two pathways ran in parallel to area 35; one pathway via area 36 

and the other via the lateral entorhinal cortex (HPC Familiar: χ2
2= 1.3, p = 0.51; CFI = 

1.0; RMSEA = 0.0; HPC Novel: χ2
2= 0.04, p = 0.98; CFI = 1.0; RMSEA = 0.0; Sham 

Familiar: χ2
2= 1.0, p = 0.61; CFI = 1.0; RMSEA = 0.0; Sham Novel: χ2

2= 0.60, p = 0.73; 

CFI = 1.0; RMSEA = 0.0; Figure 3.9).  In all four groups, the link from area 36 to area 

35 had significant path coefficients.   

Te2
Mid 

Area35

Mid 

Area36

Caudal 

Area35

Caudal 

Area36

Whole 

LEC

LEC 

Layer II

LEC 

Layer III

LEC 

Layer 

V+VI

DG CA3 CA1

r-value .617 0.822** .358 .600 -.079 -.529 -.108 .662* .121 .639* .598

p-value .058 .004 .310 .067 .827 .116 .767 .037 .739 .046 .068

r-value .306 0.687* 0.756* .392 .476 -.266 .449 .884** .545 0.748* .619

p-value .390 .028 .011 .263 .165 .457 .193 .001 .104 .013 .056

r-value .013 0.77** .589 0.82** -.061 -.677* -.054 .757* .338 0.761* 0.775**

p-value .972 .009 .073 .004 .867 .032 .883 .011 .340 .011 .008

r-value .587 0.686* .384 0.641* .334 -.416 .360 .775** 0.661* 0.801** 0.767**

p-value .074 .029 .274 .046 .346 .232 .307 .008 .037 .005 .010

r-value .618 .564 .438 0.917*** -.231 -.723* -.167 .551 .122 .571 0.669*

p-value .057 .090 .205 <0.001 .521 .018 .644 .099 .737 .084 .034

r-value .270 .142 -.117 -.064 -.072 .411 .214 .145

p-value .451 .696 .747 .861 .843 .238 .553 .689

r-value -.342 -.720* -.621 -.740* -.742* .551 -.591 -.197 -.465 -.486

p-value .334 .019 .055 .015 .014 .099 .072 .585 .175 .155

r-value .280 .216 -.154 -.057 -.111 .222 .228 .387 .181 .115

p-value .433 .548 .672 .875 .760 .537 .526 .270 .617 .751

r-value .570 .782** .539 .689* .714* -.683* .443 .578 .782** .706*

p-value .086 .007 .108 .027 .020 .029 .200 .080 .008 .023

r-value .242 .237 .401 .027 .032 -.132 -.255 -.081 .083 0.789** 0.713*

p-value .501 .510 .251 .941 .929 .716 .476 .823 .820 .007 .021

r-value .553 .509 .531 .360 .371 .291 -.347 .272 .536 0.769** 0.957***

p-value .097 .133 .115 .307 .291 .414 .326 .446 .110 .009 <0.001

r-value .297 .468 0.636* .298 .343 .306 -.288 .178 .524 0.664* 0.901***

p-value .405 .173 .048 .402 .332 .390 .420 .623 .120 .036 <0.001

Sham Familiar

LEC 

Layer III

LEC 

Layers 

V+VIDG

CA3

CA1

Mid 

Area35

Mid 

Area36

Caudal 

Area 35

Caudal 

Area 36

Whole 

LEC

LEC 

Layer II

Sham Novel

Te2
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Figure 3.9. Parahippocampal models for all groups separately. 

The four models show the optimal parahippocampal interactions derived from structural equation 

modelling for all groups separately; HPC Familiar (top left), HPC Novel (top right), Sham Familiar 

(bottom left) and Sham Novel (bottom right).  The fit is noted beside each model (CFI, comparative 

fit index; RMSEA, root mean square error of approximation). The strength of the causal influence of 

each path is denoted both by the thickness of the arrow and by the path coefficient next to that path. 

The number above each region is the proportion of its variance that can be explained by its inputs. 

Sites depicted: area Te2, area 35 and area 36 of the perirhinal cortex, and lateral entorhinal cortex 

(LEC). * p < 0.05; *** p < 0.001. 

 

When the data from all four groups were combined, the same optimal model emerged 

but with even higher levels of fit (χ2
2= 0.2, p = 0.93; CFI = 1.0; RMSEA = 0.0; Figure 

3.10). This model, for each group individually, as well as incorporating all four groups 

was also tested with the path directions reversed. This modification generated poorer 

fitting models when paths from area 36 to area 35 and LEC to area 35 were reversed 

whereas in the case of the paths between Te2 and area 36 and Te2 and LEC path 

direction did not affect model fit.  
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Figure 3.10. Parahippocampal model for all groups collapsed. 

Optimal parahippocampal for all groups collapsed into a single data set. Model fit is noted beside the 

model (CFI, comparative fit index; RMSEA, root mean square error of approximation). The strength 

of the causal influence of each path is denoted both by the thickness of the arrow and by the number 

next to that path. The number above each region is the proportion of its variance that can be explained 

by its inputs. Sites depicted: area Te2, area 35 and area 36 of the perirhinal cortex and lateral 

entorhinal cortex (LEC). * p < 0.05; *** p < 0.001. 

 

Although the data from all four groups fit the same model, the path strengths between 

the cortical regions differ (Figure 3.9). The four groups were, therefore, stacked on the 

same model in order to compare these differing path strengths.  The structural weights of 

each of the paths were constrained such that they had to have the same value in all of the 

groups, i.e., setting the models for each of the groups to be identical. This procedure 

produced a model of poorer fit than the model in which the structural weights of all 

paths were free to vary between the groups (χ2
12 Diff = 24.5, p = 0.018), indicating at least 

one of the paths differed between the groups. In order to find this path, the structural 

weights of each path were unconstrained individually. The group difference lay in the 

path from lateral entorhinal cortex to area 35 as it was only when this path was 

unconstrained, in isolation, that there was a significant increase in model fit when 

compared to the completely constrained model  (χ2
3 Diff = 11.9, p = 0.009).  

Examination of Figure 3.9 suggests that this significant difference within the same 

model structure reflects the lower path coefficients for lateral entorhinal to area 35 in the 

two Familiar Object groups. This difference was tested formally in a series of stacking 

procedures.  These procedures confirmed that Novel Object versus Familiar Object 

comparison, rather than Sham lesion versus Hippocampus lesion, was associated with 

the change in path coefficients.  This analysis initially involved collapsing and stacking 

the groups across the two between-subjects’ factors, lesion type and object type.   
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Figure 3.11 upper panels illustrate the separate model fits when the groups were 

collapsed within each lesion type (Sham or Hippocampal lesions), i.e., ignoring the 

behavioural condition.  Both the ‘hippocampal’ and ‘sham’ models were well-fitting, 

and when the two groups were stacked on the same model in which all path coefficients 

were free to vary, the fit was not significantly better than the completely constrained 

model (χ2
4 Diff = 9.06, p = 0.06) nor was the model improved by allowing the path from 

lateral entorhinal cortex to area 35 to vary between groups (χ2
1 Diff = 2.11, p = 0.15). 

Thus, it can be concluded that the group difference found in the path coefficients for this 

pathway between LEC and area 35 is not driven by hippocampal damage. It should be 

noted that if the path between Te2 and the lateral entorhinal cortex is unconstrained the 

model fit is improved by a small but significant amount (χ2
1 Diff = 4.53, p = 0.03).  

Finally, the groups were collapsed within the Novel Object or Familiar Object 

conditions (Figure 3.11 Lower), i.e., ignoring the surgical condition.  Once again, both 

models had good fit. Allowing all the path coefficients to differ between groups 

significantly improved fit over the completely constrained model (χ2
4 Diff = 11.86, p = 

0.018), indicating that there is a network difference between the animals exploring novel 

objects and those that explored familiar ones. Again, paths were unconstrained 

individually and this network difference was found in the path coefficients between 

lateral entorhinal cortex and area 35 (χ2
1 Diff = 7.11, p = 0.007), which was positive and 

significant for the Novel Object conditions but negative and non-significant for the 

Familiar Object conditions (Figure 3.11 Lower). In order to ensure this effect was not 

due to an interaction between lesion type and object type, the groups HPC Novel and 

Sham Novel (Figure 3.9; top right and bottom right respectively) were also stacked but 

no significant differences were found (χ2
4 Diff = 5.29, p = 0.30). Similarly, the groups 

HPC Familiar and Sham Familiar (Figure 3.9; top left and bottom left respectively) were 

stacked and again there were no differences between these groups on the model (χ2
4 Diff = 

5.61, p = 0.23). Thus, it can be concluded that the difference in this path strength reflects 

the exploration of different object types (Novel or Familiar Objects).  
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Figure 3.11. Parahippocampal models when the groups are combined. 

The groups were combined according to their surgical status (Upper panels) and by their behaviour 

status (Lower panels).  The upper panels depict the optimal parahippocampal interactions derived 

from structural equation modelling for both sham surgical groups (upper left) and both  hippocampal 

lesion groups (upper right), i.e., irrespective of behaviour. The lower panels depict the optimal 

parahippocampal interactions for groups combined according to their behavioural condition (both 

familiar groups, lower left; both novel groups, lower right), i.e., irrespective of surgery. Model fit is 

noted beside each model (CFI, comparative fit index; RMSEA, root mean square error of 

approximation). The strength of the causal influence of each path is denoted both by the thickness of 

the arrow and by the path coefficient next to that path. The number above each region is the 

proportion of its variance that can be explained by its inputs. Sites depicted: area Te2, area 35 and 

area 36 of the perirhinal cortex and lateral entorhinal cortex (LEC). * p < 0.05; *** p < 0.001.  
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3.3.4.2 Hippocampal-Parahippocampal models (Sham animals only) 

Network models that included the septal hippocampal subfields were calculated for the 

Sham Familiar and Sham Novel groups. The septal hippocampus was selected as 

previous research has found that this hippocampal region gives the best fitting models 

for Fos expression associated with recognition memory (Albasser et al., 2010b).  Due to 

the addition of more regions to the models, areas 35 and 36 were collapsed to a single 

region (PRH) in order to retain sufficient degrees of freedom for parameters to be 

estimated. 

The optimal models for groups Sham Familiar and Sham Novel are depicted in Figure 

3.12A and D respectively. Once again, differences between the Familiar and Novel 

conditions appear. The optimal model for group Sham Familiar involved a path between 

Te2 and lateral entorhinal cortex and another path from Te2, via perirhinal cortex, to 

lateral entorhinal cortex, which in turn projects directly to the CA1 subfield. The 

resulting model had good fit (χ2
2 = 1.3, p = 0.52; CFI = 1.0; RMSEA = 0.0; Figure 

3.12A) although only the path from Te2 to PRH was significant.  For group Sham Novel 

the best fit was provided by a simple linear model that began with a path between the 

perirhinal cortex and lateral entorhinal cortex, and from there onto  dentate gyrus, then 

to CA3 and, thence, to CA1 (Figure 3.12D). The fit for this model was, however, 

relatively poor (χ2
6 = 11.1, p = 0.085; CFI = 0.84; RMSEA = 0.31).  

The models for the Novel and Familiar conditions that incorporated the hippocampus 

were recalculated with additional correlation data (Figure 3.12B, E).  This was possible 

because the two sham groups from the present study were a direct replication of a study 

from the same laboratory using identical protocols and apparatus (Albasser et al., 

2010b). While the fine details of the Familiar and Novel network models derived by 

Albasser et al. (2010b) differ slightly from those in the present study within the 

parahippocampal cortices (although all involve Te2, caudal PRH and LEC), the patterns 

of projections to the hippocampus bear a striking resemblance. The correlational c-fos 

data from Albasser et al. (2010b) were accordingly added to the present data to derive 

models with greater power (Figure 3.12B, E).  

The optimal Familiar condition model for the combined data sets remained the same as 

that derived for group Sham Familiar in the present study (Figure 3.12B).  This model 

not only retained its high fit (χ2 2 = 0.6, p = 0.75; CFI = 1.0; RMSEA = 0.0) but all path 

coefficients gained significance. The optimal Novel condition model for the combined 

data sets (Figure 3.12E) was, however, different to that described for just group Sham 
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Novel (which did not have high fit, see Figure 3.12D).  Now the fit for the combined 

model was good (χ2
5 = 7.4, p = 0.19; CFI = 0.97; RMSEA = 0.16) and all of the path 

coefficients gained significance (Figure 3.12E). While the parahippocampal components 

of the Combined Novel and Combined Familiar groups appear very similar (Figure 

3.12B, E), obvious differences occur in the pathways from the lateral entorhinal cortex.  

For novel stimuli, the lateral entorhinal cortex projects first to CA3 and then to CA1 in 

the best fitting model.  For familiar stimuli, the pathway from the lateral entorhinal 

cortex leads just to CA1 in the best fitting model.  

Layer II of the LEC is known to project to the dentate gyrus and CA3, while layer III 

projects to CA1 (Steward & Scoville, 1976). Accordingly, the subsequent SEM analyses 

carried out on these combined models replaced the Fos counts from the whole of the 

lateral entorhinal cortex with either layer II or III counts, while all other aspects of each 

model remained the same (Figure 3.12C, F). Based on the anatomical projections it 

might be expected that layer III, but not layer II, of the LEC would provide a model of 

good fit for the Familiar groups as it is the principal source of the inputs to CA1. This 

was found to be the case (Figure 3.12C). Replacing all of LEC with just layer III created 

a Familiar model of high fit (χ2
2 = 0.55, p = 0.76; CFI = 1.0; RMSEA = 0.0) in which all 

path coefficients retained their significance (p < 0.05); whereas, using just layer II 

generated a Familiar model of poor fit (χ2
2 = 4.58, p = 0.10; CFI = 0.89; RMSEA = 

0.26). For the Novel groups the converse would be predicted. However, it was found 

that including layer II or layer III generated Novel condition models of acceptable fit 

(Figure 3.12F): layer II (χ2
5 = 7.68, p = 0.18; CFI = 0.97; RMSEA = 0.17) and layer III 

(χ2
5 = 6.69, p = 0.25; CFI = 0.97; RMSEA = 0.13). 

The remaining laminae (V and VI) of the lateral entorhinal cortex are also of interest as 

they are the primary targets for the efferents from the hippocampus and subiculum (Van 

Strien et al., 2009), as well as the source of projections beyond the temporal lobe to sites 

such as prefrontal cortex (Insausti et al., 1997). Hence, in the final SEM analyses, Fos 

counts obtained from combined layers V and VI of the LEC were added to the models in 

the place of counts from the whole lateral entorhinal cortex (i.e., for the novel condition 

this analysis was based on the model depicted in Figure 3.12E and for the familiar 

condition the analysis was based in the model depicted in Figure 3.12B). Interestingly, 

this generated a model of good fit for the novel group (χ2
5 = 2.22, p = 0.81; CFI = 1.0; 

RMSEA = 0.0) but one of poor fit for the familiar group (χ2
2 = 5.86, p = 0.053; CFI = 

0.80; RMSEA = 0.32). 
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Figure 3.12. Optimal parahippocampal – hippocampal interactions. 

The first three panels depict models for the Familiar condition (A-C), the bottom three panels (D-F)  

depict models for the Novel condition. A. Optimal model for group Sham Familiar using the present 

data. B. Optimal model when group Sham Familiar is collapsed with Group Familiar from Albasser et 

al., (2010b). C. Depicts the same model as B, but the LEC data are now just taken from cortical layer 

III. D. Optimal model for the group Sham Novel using the present data. E. Optimal model when 

group Sham Novel is collapsed with Group Novel from Albasser et al., (2010b). F. Depicts the same 

model as E, but the LEC data are now just taken from cortical layer II or from layer III (the italicised 

path coefficients in brackets relate to layer III). The model fit is provided at the bottom of each panel 

(CFI, comparative fit index; RMSEA, root mean square error of approximation) and models with 

unacceptable fit are represented with a pale grey background. The strength of the causal influence of 

each path is denoted both by the thickness of the arrow and by the path coefficient next to that path. 

The number above each region is the proportion of its variance that can be explained by its inputs. 

Sites depicted: area Te2, area 35 and area 36 of the perirhinal cortex, lateral entorhinal cortex (LEC) 

and hippocampal subfields CA1, CA3 and dentate gyrus (DG). * p < 0.05; *** p < 0.001.   
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3.4 Discussion 

Despite their many interconnections, it has been proposed by some that the perirhinal 

cortex can support recognition memory independent of the hippocampus (e.g., Aggleton 

& Brown, 1999; Norman & O’Reilly, 2003; Diana et al., 2007).  To assess this structural 

independence prediction, the present study examined the impact of hippocampal lesions 

on perirhinal cortex activity linked to recognition memory, as measured by c-fos 

expression. To induce c-fos expression, rats with either hippocampal lesions or sham 

surgeries actively explored pairs of objects, one novel and one familiar (Novel Object 

condition) in the bow-tie maze; a task that is impaired by lesions to the perirhinal cortex 

(Albasser et al., 2011a,b).  The expression of c-fos in the perirhinal cortex, along with 

area Te2 and various hippocampal subfields, has previously been found to be sensitive 

to this behavioural manipulation in normal rats (Albasser et al., 2010b).  Additional 

information was provided by a Familiar Object condition, which involved pairs of 

objects presented at different times in the past, so taxing recency memory (Albasser et 

al., 2010b). Again, there was a group with hippocampal lesions and a group with sham 

surgeries. All four groups in the present study successfully discriminated between the 

stimuli in their respective Novel Object and Familiar Object conditions.  

Differences in the overall levels of c-fos expression were not observed between the 

Novel and Familiar Object conditions (but see Albasser et al., 2010b). Rather, the two 

behavioural conditions led to different patterns of inter-correlated c-fos activity.  At the 

same time, significant correlations were found between recognition and recency 

performance and perirhinal Fos counts, these correlations are consistent with c-fos 

activation being closely linked to recognition memory performance (Seoane et al., 

2012).  As these perirhinal correlations were significant only in rats with hippocampal 

lesions, it is possible that the surgeries led to some form of cortical compensation 

(Cohen et al., 2013).  Against this view is the finding that these perirhinal correlations 

did not differ significantly between the surgical and sham groups, nor did the 

hippocampal fields show evidence of a significant correlation with object discrimination 

in the two control groups.  Whichever view is correct, the present data still support the 

notion that the perirhinal cortex can effectively function independent of the 

hippocampus to support recognition memory, while recognising its normal interactions 

with the hippocampus (Warburton & Brown, 2010).  

Irrespective of surgical status, structural equation modelling revealed that discriminating 

novel objects (recognition memory) was associated with particular activity patterns 
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linking area Te2, the perirhinal cortex, and lateral entorhinal cortex.  In the Novel Object 

surgical control rats, further correlated pathways linked lateral entorhinal cortex to 

hippocampal area CA3 and, thence, to CA1 (Figure 3.12; these same pathways could not 

be explored in those rats with hippocampal lesions). Discriminating between familiar 

objects (recency memory) was also associated with a similar parahippocampal network 

involving area Te2, perirhinal cortex, and lateral entorhinal cortex.  For the Familiar 

Object surgical controls, the correlated pathway from lateral entorhinal cortex to the 

hippocampus went directly to CA1, i.e., not to CA3 as in the Novel Object condition 

(Figure 3.12).   

In the present study, the very short retention delays helped to ensure successful object 

recognition and object recency discriminations by the surgical control groups.  This 

same feature may also explain the lack of any hippocampal lesion effect on recognition 

or recency memory performance, though it is only for recency memory that consistent 

hippocampal lesion deficits are typically reported (Agster et al., 2002; Fortin et al., 

2002; Forwood et al., 2005; Hoge & Kesner, 2007; Barker & Warburton, 2011; Albasser 

et al., 2012).  It would seem, therefore, that the parahippocampal cortex can solve simple 

recency problems, a view supported both by the correlations between perirhinal Fos 

counts and recency performance, and by the ability of perirhinal units to signal recency 

differences (Zhu et al., 1995a; Xiang & Brown, 1998). The impact of the hippocampal 

lesions on c-fos activity levels was restricted to this same recency memory condition, 

with decreases in mid perirhinal cortex and area Te2.  This decrease in perirhinal c-fos 

activity could reflect a disruption of the close cooperation between the perirhinal cortex 

and hippocampus that is thought to underlie recency memory (Warburton & Brown, 

2010; Barker & Warburton, 2011).  

The perirhinal Fos counts correlated negatively with the performance index D2 for both 

recognition and recency memory in the hippocampal lesioned groups.  The negative sign 

may seem surprising given that presenting exclusively novel stimuli increases perirhinal 

Fos counts (Zhu et al., 1995b, 1996; Wan et al., 1999, 2004).  A likely explanation stems 

from the fact that recognition memory tests involve the presentation of both novel and 

familiar stimuli for discrimination. Electrophysiological studies have shown that 

repeated, i.e., familiar, stimuli are associated with a drop in perirhinal activity, which is 

thought to provide a familiarity signal (Zhu et al., 1995a; Xiang & Brown, 1998; Brown 

& Aggleton, 2001).  The implication is that effective recognition performance relates 

most to the fall in activity on stimulus repetition, rather than the initial level of activity 
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associated with novel stimuli per se.  For this reason, low perirhinal activity may be the 

hallmark of effective recognition (Montaldi et al., 2006). The same logic could also 

apply to recency discriminations based on relative familiarity (Zhu et al., 1995a; Xiang 

& Brown, 1998). 

The initial network analyses, which were largely confined to the parahippocampal 

region, found that the model with best fit had the same overall structure for all four 

groups (Figure 3.9), i.e., it was not affected by hippocampal surgery.  Starting from area 

Te2, two pathways ran in parallel to area 36 and to the lateral entorhinal cortex, each 

then projecting to area 35 (Figure 3.9).  In all four groups, the link from area 36 to area 

35 had significant path coefficients, echoing the prevailing connectivity (Burwell & 

Amaral, 1998b). However, stacking the models revealed that the pathway from lateral 

entorhinal cortex to area 35 had stronger effective connectivity in the Novel Object 

condition. A combined model based on all four groups was also tested. When the path 

directions were reversed poorer fitting models emerged, except in the cases of the paths 

between Te2 and area 36 and between Te2 and LEC, where path direction did not affect 

model fit. These results may reflect the dense reciprocal connections between Te2 and 

area 36  (Furtak et al., 2007), and moderate reciprocal connections between Te2 and 

LEC (Burwell & Amaral, 1998b; Agster & Burwell, 2009). 

The final network analyses used just the surgical control animals as the goal was to link 

parahippocampal with hippocampal activity. The best fitting models occurred when the 

present Fos data were combined with those from a previous study (Albasser et al., 

2010b), which used identical protocols in intact rats.  Novel stimuli (recognition) were 

associated with correlated pathways from the lateral entorhinal cortex to hippocampal 

field CA3 (perforant pathway), while familiar stimuli (recency) were associated with 

correlated pathways from the lateral entorhinal cortex to CA1 (temporoammonic 

pathway).  The latter findings extend those studies that have specifically implicated the 

CA1 subfield in temporal discriminations and also help to explain the apparent 

dissociation with CA3 (Gilbert et al., 2001; Amin et al., 2006; Hoge & Kesner, 2007; 

Kesner et al., 2010).  The activation contrast between the perforant and 

temporoammonic pathways has been noted in other IEG studies comparing novel with 

more familiar stimuli (Poirier et al., 2008; Albasser et al., 2010b), though these previous 

studies had less power.  In these earlier IEG studies, the best fit for novel stimuli 

involved the perforant pathway from entorhinal cortex to the dentate gyrus and, thence, 

to CA3 (Poirier et al., 2008; Albasser et al., 2010b).  In the present study, the dentate 
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gyrus was not included in the best novel stimulus model, though there were significant 

positive correlations between dentate gyrus and CA3 c-fos activity (p=0.007).   

Additional examination of this novel/familiar pathway dissociation showed that layer III, 

but not layer II, c-fos activity in the lateral entorhinal cortex produced a model of high fit 

for the Familiar Object condition. This finding matches the connectivity as layer III 

projects to CA1 while layer II projects to the dentate gyrus and CA3 (Steward & 

Scoville, 1976). More unexpectedly, both layer II and layer III generated models of 

acceptable fit for the Novel Object condition.  

The different hippocampal subfield interactions for the Novel Object (CA3) and 

Familiar Object (CA1) conditions (Figure 3.12) imply that the hippocampus can help 

distinguish novel from familiar stimuli (i.e., support object recognition).  There are, 

however, several caveats.  Not only did the hippocampal lesions leave parahippocampal 

c-fos activity levels unaffected for novel stimuli, consistent with spared 

novelty/familiarity information, but many hippocampal lesion studies have failed to find 

changes in object recognition memory performance (for reviews see Mumby, 2001; 

Winters et al., 2008; Brown et al., 2010). An alternative explanation for this differential 

hippocampal signal stems from the fact that when a rat explores an object it does more 

than register its novelty or familiarity. The rat will spontaneously learn associated 

information, including its spatial and temporal properties, along with its context (Poucet, 

1989; Dix & Aggleton, 1999; Hannesson et al., 2004).  The extent of this new 

associative learning should be greatest for novel stimuli (Wagner, 1981).  Lesion studies 

have repeatedly shown that this additional associative learning requires the hippocampus 

(Save et al., 1992; Barker & Warburton, 2011) so, potentially, explaining the altered 

pattern of IEG activity in that structure.  This spatial and temporal information related to 

the object would then be available to support recollective-based recognition (Fortin et 

al., 2004; Diana et al., 2007; Easton & Eacott, 2010).  

If this analysis is correct it would be predicted that output routes from the hippocampus 

would emerge, reflecting this new associative information. One output that was 

considered is from the hippocampus to the entorhinal cortex. The large proportion of 

hippocampal efferents terminate in the deep layers of lateral entorhinal cortex (Van 

Strien et al., 2009), so providing the rationale to focus on just these layers.  It was found 

that in the novel object condition, Fos counts in combined cortical layers V and VI of the 

lateral entorhinal cortex of the sham animals correlated significantly with Fos counts in 

hippocampal subfields CA1 and CA3, whereas these correlations were not significant in 
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the familiar object condition (Table 3.3). The resulting structural equation modelling 

provided models with good fit for the Novel but not the Familiar conditions.  While this 

preliminary analysis suggests a potential feedback loop in the case of Novel stimuli, 

these hippocampal pathways were seemingly not critical for the c-fos responses to novel 

stimuli in perirhinal cortex.   

The additional hippocampal learning need not, however, aid familiarity-based 

recognition memory as that is context free (Barker & Warburton, 2011b).  In this 

account, the perirhinal cortex is required for object-based information, including 

familiarity, while the hippocampus supports additional associative learning, in 

conjunction with the parahippocampal region (Diana et al., 2007; Barker & Warburton, 

2011b). This description closely maps onto dual process models of recognition, which 

often assume two, largely independent information streams (Yonelinas, 2002; Norman 

& O’Reilly, 2003).  The present findings also concur with the further assumption that 

this independence reflects different anatomical substrates (Aggleton & Brown, 1999; 

Diana et al., 2007; Vann et al., 2009), with the perirhinal cortex, in particular, 

responsible for familiarity-based recognition, while the hippocampus is responsible for 

recollective-based recognition (Brown & Aggleton, 2001; Aggleton et al., 2005; 

Eichenbaum et al., 2007; Rudebeck et al., 2009). Specifically, the models of 

parahippocampal-hippocampal interactions presented here map on to the ‘what’ pathway 

of the binding of item and context model (Diana et al, 2007). 

3.4.1 Summary 

To summarise the findings of this study, rats with hippocampal lesions successfully 

discriminated novel from familiar objects while others discriminated the relative recency 

of objects. Further, interactions in the parahippocampal region were unaffected by loss 

of the hippocampus for these types of memory, indicating that the perirhinal cortex can 

process object memories independently from the hippocampus. Models of interactions 

between the parahippocampal cortex and the hippocampus indicate a differential mode 

of hippocampal engagement when animals explore novel compared to familiar objects. 

Familiar objects engaged the pathway from lateral entorhinal cortex layer III to CA1 

while novel objects engaged the pathway from lateral entorhinal cortex, layers II or III to 

CA3 and then to CA1. Additionally, when rats were discriminating novel from familiar 

objects there was a stronger effective connection between area 35 of the perirhinal 

cortex and the lateral entorhinal cortex providing a possible route by which novelty 

information from the perirhinal cortex could generate the switch between the pathways.
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4 Contrasting networks for 
recognition memory and recency 
memory revealed by immediate-
early gene imaging in the rat 

4.1 Introduction 

Recency memory, or temporal order memory, is the ability to discriminate objects with 

varying degrees of familiarity based on the relative distance in time since they were last 

encountered. It has been demonstrated that lesions to the perirhinal cortex in rats 

consistently cause impairments in both object recognition and object recency memory 

(Mumby & Pinel, 1994; Ennaceur et al., 1996; Brown & Aggleton, 2001; Barker & 

Warburton, 2011a,b; Winters et al., 2008). The perirhinal cortex does not however 

complete these tasks in isolation and there is evidence that recognition memory and 

recency memory partly depend on different neural pathways.  Evidence for this comes 

from lesion studies; damage to the hippocampus or medial prefrontal cortex are 

consistently implicated in object recency memory but not recognition memory (Mumby, 

2001; Fortin et al., 2002; Kesner et al., 2002; Hannesson et al., 2004a,b; Forwood et al., 

2005; Barker et al., 2007; Hoge & Kesner, 2007; Barker & Warburton, 2011a,b; DeVito 

& Eichenbaum, 2011; Albasser et al., 2012).  

Immediate-early gene (IEG) imaging can be used as an indirect measure of neural 

activity (Herdegen, 1996; Chaudhuri, 1997; Tischmeyer & Grimm, 1999; Guzowski et 

al., 2005). Further evidence for divergent neural networks that underpin recognition and 

recency memory comes from IEG imaging experiments.  Utilising the expression of the 

IEG, c-fos, rats engaged in novel object recognition or recency memory tasks have been 

shown to display different patterns of integrated neuronal activity across medial 

temporal lobe regions. Structural equation modelling on c-fos data generated from 

animals engaged in a recency discrimination task revealed that this test recruited the 

pathway from lateral entorhinal cortex (principally layer III) to CA1 in the hippocampus 

(Chapter 3, Albasser et al., 2010b).  The fundamental difference between the optimal 

network model derived for the novel as compared to the familiar object based task was 

the involvement of hippocampal subfield CA3 in the novel object discrimination task 

(Chapter 3, Albasser et al., 2010b).  The present study sought, therefore, to examine if 
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the pattern of functional connectivity observed during the familiar object based task 

described in Chapter 3 can be generalised to other forms of familiar object based tasks; 

particularly when the temporal properties of the test stimuli are more specifically 

manipulated. 

Behavioural tests of object recency memory in rodents typically involve a paradigm in 

which there is a discrete intervening event (Mitchell & Laicacona 1998; Ennaceur, 

2010).  In such tests, the animal is introduced to an identical pair of objects (A+A) and 

then removed from the test apparatus. When the animal is returned to the apparatus it is 

exposed to a second pair of identical objects (B+B), again followed by removal from the 

test arena. Subsequent testing involves presentation of objects A and B together for the 

first time to allow for selection between them (e.g., Mitchell & Laicacona 1998; 

Hannesson et al., 2004a,b; Barker et al., 2007; Albasser et al., 2012). Rats with intact 

recency memory will spend more time exploring the more novel object, i.e., that seen 

least recently (Ennaceur & Delacour, 1988; Mitchell & Laicacona 1998; Albasser at al., 

2012). This form of recency testing, in which the stimulus presentations are separated by 

distinctive events, is sometimes known as between-block recency; the imposition of an 

additional episode or experience may aid in separating the two items to be distinguished 

based on their temporal properties (Templer & Hampton, 2013). This protocol can be 

compared with within-block recency; the ability to select between stimuli previously 

presented in a single, continuous series, i.e., without any specific intervening event (e.g., 

Shaw & Aggleton, 1993; Agster et al., 2002; Fortin et al., 2002).  Reflecting the majority 

of published studies on object recency by rodents, the present study focussed on recency 

discriminations when the objects are separated by time as well as by a distinct event 

(being removed from the apparatus).  

Rather than give each rat a single recency memory test, which may not be sufficient to 

produce a measurable difference in c-fos expression, the rats received 20 recency trials 

in a test session prior to histological analysis (Experiment 2).  Consequently, each rat in 

the Recency Test condition first explored 20 pairs of objects, where the objects in each 

pair were identical but differed from those in all of the other pairs (first sample phase). 

After a delay of 90 minutes in a dark room, the second sample phase consisted of 

another 20 duplicate pairs of objects, which differed from those in all of the other 

sample trials (see Table 4.1).  Each trial in the subsequent Recency Test consisted of 

pairs of non-identical objects, one from the first sample phase, the other from the second 

sample phase.  The bow-tie maze (Albsasser et al., 2010a,b) was used for all behavioural 



98 

 

testing as this apparatus makes it possible to deliver multiple consecutive trials without 

the need to handle the rat. 

A similar behavioural design was used for the Recency Control condition in Experiment 

2. The goal was to match the sensorimotor demands of the experimental group but make 

the recency discrimination impossible to solve. For this reason the rats in each condition 

had to be equally familiar with the objects to be discriminated.  The first and second 

sample phases were identical to those described above for the Recency Test group (see 

Table 4.1). The final test phase in the Recency Control condition also involved the same 

objects that were used for the Recency Test and, once again, each trial contained two 

different objects (Table 4.1). But for this group the object pairings were selected to make 

their temporal properties almost indistinguishable. Consequently, each object pair in the 

Recency Control condition consisted of two items from adjacent trials in the same 

sample phase. Thus, while objects to be discriminated in the Recency Test condition 

were separated by 110 minutes, those in the Recency Control were separated by less 

than a minute (in practice this was just a few seconds).  In all other respects, this control 

protocol matched the recency memory condition (Table 4.1).  

Following either the recency or the control procedures, Fos, the protein product of c-fos, 

was visualised by immunohistochemistry and quantified across multiple brain sites. 

Structural equation modelling was applied to the resulting Fos-related activity data to 

test anatomically-plausible patterns of functional connectivity.  

In the rodent, several regions beyond the medial temporal lobe have been implicated in 

recency memory processing. As mentioned above, these sites include medial prefrontal 

cortex but nuclei of the anterior and midline thalamus have also been shown to 

contribute to recency memory (Mitchell & Laiacona, 1998; Hannesson et al., 2004a,b; 

Wolff et al., 2006; Cross et al., 2013; Dumont & Aggleton, 2013). Additionally, 

informative data have come from crossed lesion studies; in this experimental paradigm a 

lesion is made in a brain region in one hemisphere while a different region is damaged in 

the contralateral hemisphere. Behavioural deficits observed following this type of 

intervention are interpreted as signifying not only that those regions are required for 

successful completion of the task but also specifically that interaction between the two 

regions in question is an essential task requirement.  Separate crossed lesion studies have 

demonstrated that successful recency memory requires a functional connection between 

the perirhinal and medial prefrontal cortices as well as between the medial dorsal 

thalamic nucleus and the medial prefrontal cortex (Hannesson et al., 2004b; Barker et 
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al., 2007; Barker & Warburton, 2011a; Cross et al., 2013). Together, this implies that 

these regions form at least part of an integrated neural network that is required for 

recency discriminations but not for the judgement of prior occurrence. There is also 

evidence that lesions to the anterior thalamic nuclei principally disrupt recency memory 

which does not involve an intervening event (Wolf et al., 2006; Dumont et al., 2013); 

thus one may predict their differential involvement across the experimental conditions in 

this experiment. Indeed, these regions are all implicated in Aggleton’s 

parahippocampal–prefrontal network for discriminating the familiarity and recency of 

occurrence of objects (Aggleton, 2012). Based on these data, in addition to verifying the 

previously derived network model for familiar object processing derived in Chapter 3, a 

subsequent aim was to extend and optimise the model to incorporate regions outside of 

the medial temporal lobe. 

Prior to recency testing, all rats were initially examined for their ability to recognise 

objects after the same retention delays as those proposed for the recency memory 

problem (Experiment 1; Recognition control).  Had the rats not been able to retain 

familiarity information in this recognition control test, then the subsequent recency task 

(Experiment 2) could also effectively be seen as just a recognition test; i.e., novel 

(forgotten sample)  vs. familiar.   

4.2 Materials and methods 

4.2.1 Animals 

Subjects comprised 18 naïve, male, Lister Hooded rats (Harlan, Bicester, UK). They 

were housed as described in General Methods section 2.2. The rats were approximately 

10 weeks old at the start of the study and weighed 277-355g.  

4.2.2 Apparatus 

Testing took place in a bow-tie maze as described in the General Methods section 2.3.1 

(Figure 2.2).  

4.2.3 Objects 

Each experiment used separate collections of pairs of three-dimensional junk objects 

made of plastic, glass or ceramics.  Experiment 1 used 100 objects while Experiment 2 

used 80 objects (see Table 4.1).  
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4.2.4 Behavioural Testing 

4.2.4.1 Pre-training 

As described in the General Methods section 2.3.3.  

4.2.4.2 General testing protocol 

Both Experiments 1 and 2 involved two sample phases and one test phase (Table 4.1).  

The two protocols only differed in the final test phase. In both cases, each of the three 

phases contained 20 trials, each of one minute duration. Each phase was separated by 90 

minutes. At the beginning of the first sample phase each rat was placed in one end of the 

maze, which was empty. The experimenter then lifted the central door so that the rat 

could run to the other side of the maze to begin Trial 1, where a pair of identical novel 

objects (A1 and A2) covered the two sucrose wells, each containing a single sucrose 

pellet. The rat was allowed to retrieve the food pellets and freely explore the objects 

during the one minute trial. The sliding door was then lifted so that the rat could run to 

the other side of the maze to begin Trial 2, where another duplicate pair of novel objects 

(B1 and B2) covered the two food wells. This sample phase protocol continued with 

pairs of identical novel objects, covering baited food wells, until 20 trials were 

completed. Rats were then placed in a dark, quiet holding room, for 90 minutes, until the 

beginning of the next phase when they were returned to the bow-tie maze (Table 4.1).  

The second sample phase was identical to that described above, except that new 

duplicate pairs of objects were used on each of the 20 trials; thus, 40 pairs of novel 

objects were seen by the rats on completion of the second sample phase.  The rats were 

returned to the dark holding room for a further 90 minutes before the test phases for 

Experiments 1 and 2 began. 

4.2.4.3 Experiment 1 (Recognition control) 

Following the two sample phases described above, each trial in the test phase consisted 

of a pair of dissimilar objects over the two food wells. One object was familiar (from the 

first sample phase) while the other object was novel (Table 4.1). This test phase 

comprised 20 consecutive trials of one minute each. As a consequence, recognition of 

the familiar object from the first sample phase involved a retention delay of 220 minutes. 

All objects (both novel and familiar) were baited with a single sucrose pellet and the 

position of the novel object (left or right) was counterbalanced. 
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Table 4.1. Schematic showing the sequence of object presentations in different phases of experiment. 

Behavioural Design 

Trials 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1st Sample phase 
A B C D E F G H I J K L M N O P Q R S T 

A B C D E F G H I J K L M N O P Q R S T 

2nd Sample phase 
a b c d e f g h i j k l m n o p q r s t 

a b c d e f g h i j k l m n o p q r s t 

Recognition Control (Exp. 1) 
A B C D E F G H I J K L M N O P Q R S T 

α β γ δ ε ζ η θ ι ξ κ Λ μ ν ο π ς ρ σ τ 

Recency Test (Exp. 2) 
A B C D E F G H I J K L M N O P Q R S T 

a b c d e f g h i j k L m n o p q r s t 

Recency Control (Exp. 2) 
A a C c E e G g I i K k M m O o Q q S s 

B b D d F f H h  J j L l N n P p R r T t 

  

Different objects are represented by different letters and by changes in case (upper or lower).  Bold characters represent the first presentation of an object (i.e., when novel).   

The structure of the first two phases for Experiments 1 and 2 were identical.  For the recognition memory test (Exp. 1) each test trial comprised one familiar and one novel 

object. For the recency conditions (Exp. 2) each test trial comprised two familiar objects from different times in the past.
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4.2.4.4 Experiment 2 (Recency memory c-fos) 

Pairs of rats from the same cage were randomly divided between two behavioural 

protocols (Recency Test and Recency Control). Testing began at least five days after 

completion of Experiment 1. 

4.2.4.5 Recency Test group 

The two sample phases for the nine rats were exactly as described in the general protocol 

with new objects pairs (see Table 4.1). In the test phase, rats were now presented with 

two different, familiar objects; one object seen in the first (earlier) sample phase and a 

more recent object seen in the second sample phase (see Table 4.1). The test phase 

began 90 minutes after completion of sample phase 2. The pairs of objects were matched 

so that the object from trial 1 of sample phase 1 was paired with the object from trial 1 

of sample phase 2, and so on (see Table 4.1). This meant that the objects from the two 

sample phases were separated by 110 minutes (Table 4.1).  The test phase consisted of 

20 trials, each of one minute.  All objects were baited with a single sucrose pellet. 

Placement of the more recent object to the left or right side was counterbalanced.  At 

test, items from the first sample phase were explored 220 minutes after their initial 

sample, i.e., the same retention interval as used in Experiment 1. On completion of the 

final test phase, the rats were placed in a dark room for 90 minutes and then perfused as 

described in the General Methods section 2.4.  

4.2.4.6 Recency Control group 

The two sample phases for the nine rats were identical to those for the Recency Test 

group (Table 4.1).  In the third phase, the rats were again presented with non-identical 

pairs of objects that were seen previously in the sample phases. This time, the pairs of 

objects were taken from successive trials in the same phase. For example, in trial 1 of 

the third phase, the objects presented were from trial 1 and trial 2 of the first sample 

phase, while in trial 2 the objects presented were from trial 1 and trial 2 of the second 

sample phase (Table 4.1). The object pairings in the final test phase not only ensured 

that the order in which individual objects occurred was as closely matched as possible to 

that used in the Recency Test (Table 4.1), but also ensured that the recency differences 

were particularly small as they were between objects that occurred in consecutive trials.  

Although each sample trial lasted one minute, because the rats ran directly from the end 

of one sample trial to the next sample trial, the interval between successive objects was, 

in practice, often just a few seconds. The test phase again consisted of 20 trials of one 
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minute each.  All objects were baited with a single sucrose pellet. Placement of the more 

recent object on the left or right was counterbalanced. On completion of the test session, 

the rats were placed in a dark room for 90 minutes and then perfused as described in the 

General Methods section 2.4.  

4.2.5 Analysis of behaviour 

As described in General Methods section 2.3.5. 

4.2.6 Immunohistochemistry 

As described in General Methods section 2.7. 

4.2.7 Regions of interest 

The multiple regions of interest are illustrated in Figure 4.1. Two brain atlases 

(Swanson, 1992; Paxinos & Watson, 2005) helped to verify the locations of brain areas, 

unless otherwise specified. The anterior – posterior (AP) coordinates (mm from bregma) 

in the descriptions below and in Figure 4.1 are from Paxinos & Watson (2005). The 

regional categories below reflect the groupings subsequently used in the statistical 

analyses of Fos counts. 

4.2.7.1 Perirhinal cortex 

The perirhinal cortex (PRH) nomenclature and borders were taken from Burwell (2001). 

Separate counts were made in the rostral (from AP -2.76 to -3.84), mid (AP-3.84 to 

4.80) and caudal (from AP -4.80 to -5.52) perirhinal cortex. The PRH was also 

subdivided into areas 35 (ventral) and 36 (dorsal), making a total of six areas within this 

regional category. 

4.2.7.2 Parahippocampal cortex 

Separate cells counts were taken from the lateral and medial entorhinal cortices (LEC 

and MEC respectively) from sections near AP -4.92 to -5.52. In addition, cell counts 

were taken from the visual association area Te2, which is dorsal to area 36.  This cortical 

area is interconnected with the postrhinal, perirhinal and lateral entorhinal cortices, and 

has previously been implicated in visual novelty detection (Wan et al., 1999; Zhu et al., 

1996; Albasser et al., 2010b; Ho et al., 2011). Fos counts were also made in the 

postrhinal cortex (POR; AP -7.08 to -8.04); the boundaries were based on Burwell 

(2001). Much of the postrhinal cortex corresponds to the area labelled as the ectorhinal 

cortex by Paxinos and Watson (2005). 
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Figure 4.1. Regions of interest for c-fos analyses. 

Sites included: AD, anterodorsal thalamic nucleus;  AM, anteromedial thalamic nucleus;  ATN, 

anterior thalamic nuclei;  Aud,  primary auditory cortex;  AV, anteroventral thalamic nucleus;  CA 

fields, intermediate (inter), septal (sept) and temporal (temp);  DG, dentate gyrus;  dorsal Sub, dorsal 

subiculum;  LEC, lateral entorhinal cortex;  MD, medial dorsal thalamic nucleus;  MEC, medial 

entorhinal cortex;  PL, prelimbic cortex;  PRH, perirhinal cortex, caudal, mid and rostral levels; POR, 

postrhinal cortex;  Reuniens, nucleus reuniens of thalamus; Te2, area Te2; ventral Sub, ventral 

subiculum. The numbers below refer to the approximate distance in mm from bregma. Adapted from 

the atlas of Paxinos & Watson (2005).  

4.2.7.3 Hippocampal formation 

Hippocampal subfields (dentate gyrus, CA1, and CA3) were subdivided into their septal 

(dorsal), intermediate, and temporal (ventral) divisions (Bast, 2007; Strange et al., 2014). 

The septal hippocampus counts (dentate gyrus, CA3 and CA1) were obtained from 

sections at AP -2.52 to -3.24 while those for the intermediate hippocampus (dentate 

gyrus, CA1, CA3) came from AP -4.80 to -5.52. The border between the intermediate 
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and temporal hippocampus corresponds to -5.0 mm dorsoventral from bregma (Paxinos 

& Watson, 2005). Within the temporal (ventral) hippocampus, counts were made in CA1 

and CA3 fields (at the same AP as the intermediate hippocampus). Additional cell 

counts were taken in both the dorsal and ventral subiculum (from around AP -5.16). 

4.2.7.4 Prelimbic cortex and limbic thalamus 

Fos-positive neuronal cell counts were made within the prelimbic (PL) region of the 

medal prefrontal cortex from AP +3.72 to +2.76.  Cell counts were also made in five 

thalamic nuclei that are directly interconnected with either the hippocampus or 

prefrontal cortex.  These were the anterodorsal (AD), anteromedial (AM), anteroventral 

(AV), medial dorsal (MD) nuclei, and nucleus reuniens (see Figure 4.1).   

4.2.7.5 Auditory cortex 

Counts of Fos-positive cells were made in the auditory cortex (Aud) from AP -4.80 to -

5.52 to provide an area where a null result might be expected if the behavioural tasks are 

well matched. 

4.2.8 Image capture and analysis of c-fos activation  

As described in General Methods section 2.8.  

4.2.9 Statistical analysis 

4.2.9.1 Behavioural data 

For Experiment 1, the final cumulative D1 and updated D2 scores were compared using 

two-sample t-tests (two-tailed) for the groups of rats that would subsequently comprise 

the separate behavioural groups in Experiment 2.  One-sample t-tests (one-tailed), were 

then applied to the cumulative D1 and updated D2 scores to determine if the indices of 

performance were significantly above chance level (zero) for the two groups of rats. The 

same analyses were applied to the behavioural data from Experiment 2, with the addition 

that total cumulative levels of exploration were also compared between the two recency 

groups (two-tailed, two-sample t-test). Additional paired sample t-tests (two-tailed) were 

calculated on the behavioural measures for the Recency Control group to compare 

between trials involving objects from the first sample phase and those from the second 

sample phase (Table 4.1).   
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4.2.9.2 Fos data 

Initial comparisons used the raw counts of Fos-positive cells in the regions of interest to 

make direct comparisons between the two recency groups.  Furthermore, sub-regions 

within the various regions of interest (e.g., within the hippocampal formation and 

parahippocampal region) were first brought together in groups and then analysed with a 

one between-subjects factor (recency condition) and one within-subjects factor (ROI) 

ANOVA.  This regional grouping procedure reduced the numbers of comparisons and so 

helps to protect against Type I errors. These groupings are described in the Regions of 

Interest section 4.2.7. Further, as perirhinal cortex was analysed at three levels along its 

rostral-caudal extent, this was taken into account when analysing Fos expression; a one 

between-subjects factor (recency condition) and two within-subjects factor (rostral-

caudal level and ROI) ANOVA was calculated. Finally, Fos counts in auditory cortex 

were compared between the behavioural conditions with a two-sample t-test (two-

tailed). 

The Fos counts for all individual areas were also correlated (Pearson product moment 

coefficient) with all of the other areas, as well as with the behavioural indices of 

performance (D1, D2, total exploration), for each of the two groups.  In view of the large 

number of individual areas counted (27 in total), some sites were again combined prior 

to these correlations to reduce the total numbers of comparisons. Examples include the 

three anterior thalamic nuclei, the subfield counts across different parts of the 

hippocampal AP axis (septal, temporal, intermediate), the dorsal and ventral subiculum, 

and areas 35 and 36.  

4.2.10 Structural equation modelling 

As described in General Methods section 2.10. 

4.3 Results 

4.3.1 Experiment 1 (Recognition control) 

Comparisons between the two sets of rats that would subsequently form the  Recency 

test group and the Recency control group showed that there were no significant 

differences for either the cumulative D1 (t16 = 0.37, p = 0.72) or final, updated D2 (t16 = 

0.11, p = 0.92). Importantly, both groups of rats displayed a clear preference for novel 

over familiar objects in the test phase (Figure 4.2 lower panels).  Consequently the 

future Recency Test group was above chance for both discrimination measures (D1: t8 = 
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4.87, p < 0.001; D2: t8 = 8.25, p < 0.001). Likewise, the same discrimination measures 

for the future Recency Control group were above chance (D1: t8 = 6.06, p < 0.001; D2: t8 

= 5.84, p < 0.001).    

 

 

Figure 4.2. Experiment 1 and 2: Behavioural measures of object recognition and 

recency memory. 

The top left graph shows the mean total time rats spent exploring all objects in the test phase of 

Experiments 1 and 2. The top right graph illustrates the exploration time of the Recency Control 

group in the test session of Experiment 2 divided into exploration of objects first seen in sample phase 

1 and objects first seen in sample phase 2. The bottom left graph depicts the difference in time spent 

exploring novel objects minus time spent exploring familiar objects (Exp. 1) or time spent exploring 

less recent objects minus time spent exploring recent objects (Exp. 2) across the 20 trials (cumulative 

D1).  The bottom right graph represents the same data as the bottom left graph but the discrimination 

scores are expressed as the Updated D2 ratios (D1/exploration). All graphs show the mean 

performance ± standard error of the mean. Note, that for Experiment 1 the group names refer to how 

the rats were subsequently allocated for Experiment 2. *** p < 0.001   

4.3.2 Experiment 2 (Recency memory c-fos) 

4.3.2.1 Behaviour 

As expected, the Recency Test group had superior recency discrimination scores to those 

of the Recency Controls, as measured by both the cumulative D1 (t16 = 4.17, p = 0.001) 
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and updated D2 (t16 = 4.77, p ≤ 0.001) scores (Figure 4.2 lower panels).  The Recency 

Test group successfully discriminated objects in the first sample phase from those in the 

more recent, second sample phase (D1: t8 = 5.67, p < 0.001; D2: t8 = 6.42, p < 0.001). In 

contrast, the Recency Control group failed to discriminate between objects that were 

temporally adjacent in the same series (D1: t8 = 0.40, p = 0.35; D2: t8 = 0.17, p = 0.44).  

Finally, there was no group difference in total exploration times (Figure 4.2, upper left 

panel; t8 = 0.82, p= 0.43). 

In view of their status, it is important to test whether the Recency Control group showed 

any differential behaviour reflecting the temporal properties of the stimuli. Using data 

from the test phase only, it was possible to separate the final series of trials into those 

involving objects from the first sample phase (odd  numbered trials) and those from the 

second sample phase (even numbered trials).  No difference was found in total 

exploration (Figure 4.2, upper right panel; t8 = 1.51, p = 0.17).  Likewise, in neither 

subset of trials could the control rats discriminate the objects based on their relative 

recency, nor did the recognition score (D2) differ for these two subsets of trials (t8 = 

0.31, p = 0.77).  

4.3.2.2 Fos activation: group differences and correlation data 

The counts of Fos-positive cells in the two behavioural conditions rarely differed in the 

various regions of interest (Figure 4.3).  Attention, therefore, focused on two sets of 

correlations. The first set of correlations concerned an area’s Fos count and the 

behavioural performance (D1, D2, total exploration) of each group (Table 4.2).   

One concern is that the multiple correlations will increase the risk of Type 1 errors.  For 

this reason it is notable that in the Recency Test group, of the 20 sites examined (Table 

4.2), the Fos counts significantly correlated (p < 0.05) with D2 scores in 10 sites and 

with D1 in 11 sites.  Far fewer sites in the Recency Control group had Fos counts that 

correlated with either D2 or D1 (maximum of two), though these correlations in the 

control group are more difficult to interpret given that the recency memory scores in this 

group were close to zero.  It is, therefore, particularly interesting that the opposite group 

pattern was seen for total exploration levels.  None of the 20 sites had Fos counts that 

correlated with total exploration in the Recency Test group, but there was a significant 

correlation in seven sites for the Recency Control group. 

The second set of correlations concerns the inter-area Fos counts within each of the two 

groups (Table 4.2). These show probability levels uncorrected for multiple comparisons 
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as the individual correlations are of limited informative value. More importantly, these 

same correlations provide the source data for the structural equation modelling, where 

the fit of the overall model helps to compensate for Type 1 errors in the individual 

correlations that comprise the model.   In view of this same issue, it is important that any 

model must match established patterns of connectivity between the regions of interest, 

i.e., potential models are constrained.  

In an attempt to further address the possibility of Type 1 errors by decreasing the 

numbers of correlations and to help reduce variance, the subfield Fos counts for the 

septal, intermediate and temporal sub-regions of the hippocampus were combined, as 

were counts from the three anterior thalamic nuclei. Additionally, it was these combined 

regional counts that were utilised in the subsequent structural equation modelling 

analyses. Thus, a total of 20 analysed regions remained but 23 are included in Table 4.2. 

Due to the assumed importance of the perirhinal cortex in object based tasks, the 

separate Fos data for areas 35 and 36 were included to investigate their relationship with 

the behavioural measures. Combined counts at each of the three analysed rostral-caudal 

levels of perirhinal cortex were also included as these data were used in the subsequent 

structural equation modelling analyses. 
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Table 4.2. Experiment 2: Inter-area correlations of c-fos counts and behavioural measures 

 

The top right diagonal matrix (darker grey) relates to data from the Recency Test group while to bottom left diagonal matrix (lighter grey) relates to data from the Recency Control group. Significant correlations (uncorrected) are in bold. 

*p<0.05, **p<0.01, ***p<0.001.  Abbreviations: see Figure 4.1.   

Exploration D1 D2

Rostral 

Area35

Rostral 

Area36

Rostral 

PRH

Mid 

Area35

Mid 

Area36 Mid PRH

Caudal 

Area35

Caudal 

Area36

Caudal 

PRH Te2 LEC MEC POR CA1 CA3 DG

Dorsal 

Sub

Ventral 

Sub PL MD ATN Reuniens Aud

r-value .612 -.213 .373 .252 .313 .551 .202 .387 .244 .003 .122 .103 .179 .210 .124 -.070 .154 -.081 .088 .078 .271 .465 .112 .280 -.305 r-value

p-value .080 .582 .322 .513 .413 .124 .603 .303 .526 .994 .754 .792 .645 .588 .751 .857 .692 .837 .821 .842 .480 .208 .774 .466 .425 p-value

r-value -.676* .617 .764* .671* .720* .798* .691* .775* .800** .724* .780* .657 .718* .774* .574 .574 .668* .394 .663 .779* .484 .334 .378 .717* .485 r-value

p-value .045 .077 .017 .048 .029 .010 .039 .014 .010 .027 .013 .054 .029 .014 .106 .106 .049 .294 .052 .013 .187 .379 .316 .030 .186 p-value

r-value -.655 .933*** .553 .532 .545 .467 .653 .588 .788* .882** .858** .773* .758* .715* .677* .790* .677* .597 .553 .880** .290 .019 .310 .650 .879** r-value

p-value .056 <0.001 .123 .141 .129 .205 .056 .096 .012 .002 .003 .014 .018 .030 .045 .011 .045 .090 .122 .002 .449 .961 .417 .058 .002 p-value

r-value .103 -.182 .012 .976*** .994*** .874** .960*** .959*** .623 .712* .686* .793* .689* .629 .302 .417 .623 .228 .614 .606 .820** .556 .485 .813** .700* r-value

p-value .793 .639 .975 <0.001 <0.001 .002 <0.001 <0.001 .073 .031 .041 .011 .040 .070 .430 .264 .073 .556 .079 .084 .007 .120 .185 .008 .036 p-value

r-value .351 -.656 -.484 .677* .994*** .825** .931*** .918*** .506 .676* .610 .757* .595 .631 .270 .363 .591 .175 .641 .584 .896** .535 .507 .768* .757* r-value

p-value .355 .055 .187 .045 <0.001 .006 <0.001 <0.001 .165 .046 .081 .018 .091 .068 .483 .337 .094 .653 .063 .098 .001 .137 .163 .016 .018 p-value

r-value .251 -.464 -.265 .911** .920*** .854** .951*** .943*** .566 .698* .651 .779* .645 .634 .287 .391 .610 .202 .632 .598 .864** .549 .500 .795* .734* r-value

p-value .515 .208 .491 .001 <0.001 .003 <0.001 <0.001 .112 .037 .058 .013 .061 .067 .454 .298 .081 .603 .068 .089 .003 .126 .171 .010 .024 p-value

r-value .382 .023 .135 .760* .288 .566 .835** .955*** .585 .563 .588 .823** .569 .482 .499 .334 .688* .262 .446 .591 .757* .516 .657 .893** .531 r-value

p-value .311 .954 .728 .017 .452 .112 .005 <0.001 .098 .115 .096 .006 .110 .189 .171 .380 .041 .496 .229 .094 .018 .155 .055 .001 .141 p-value

r-value .634 -.296 -.165 .728* .425 .625 .904** .961*** .701* .804** .774* .849** .675* .528 .309 .415 .589 .221 .578 .602 .723* .381 .456 .813** .787* r-value

p-value .067 .440 .672 .026 .254 .072 .001 <0.001 .035 .009 .014 .004 .046 .144 .419 .267 .095 .568 .103 .086 .028 .312 .217 .008 .012 p-value

r-value .528 -.150 -.024 .762* .370 .612 .973*** .979*** .673* .717* .714* .873** .651 .528 .419 .392 .665 .251 .536 .623 .772* .466 .578 .889** .692* r-value

p-value .144 .701 .950 .017 .327 .080 <0.001 <0.001 .047 .030 .031 .002 .057 .144 .262 .297 .051 .514 .137 .073 .015 .207 .103 .001 .039 p-value

r-value .716* -.475 -.434 .546 .492 .566 .663 .858** .785* .900** .973*** .732* .765* .586 .606 .646 .576 .454 .529 .781* .229 .011 .127 .658 .580 r-value

p-value .030 .197 .244 .128 .178 .112 .052 .003 .012 .001 <0.001 .025 .016 .097 .083 .060 .105 .219 .143 .013 .554 .978 .744 .054 .101 p-value

r-value .584 -.491 -.486 .342 .282 .340 .407 .683* .567 .897** .976*** .732* .675* .689* .504 .577 .510 .308 .678* .791* .400 -.033 .148 .611 .839** r-value

p-value .099 .179 .184 .367 .463 .371 .277 .043 .111 .001 <0.001 .025 .046 .040 .166 .104 .161 .421 .045 .011 .286 .933 .703 .080 .005 p-value

r-value .661 -.497 -.475 .446 .387 .454 .537 .783* .684* .969*** .978*** .751* .737* .656 .568 .626 .556 .388 .622 .807** .326 -.012 .142 .651 .733* r-value

p-value .052 .174 .197 .228 .303 .219 .136 .013 .042 <0.001 <0.001 .020 .023 .055 .111 .071 .120 .302 .074 .009 .392 .975 .716 .058 .025 p-value

r-value .345 -.132 -.021 .700* .158 .461 .799** .819** .830** .633 .558 .608 .787* .529 .701* .662 .845** .592 .421 .796* .649 .394 .601 .964*** .766* r-value

p-value .363 .734 .958 .036 .684 .212 .010 .007 .006 .068 .118 .083 .012 .144 .035 .052 .004 .093 .259 .010 .058 .294 .087 <0.001 .016 p-value

r-value .654 -.097 -.131 .186 -.130 .026 .733* .715* .742* .599 .476 .546 .633 .705* .586 .897** .819** .771* .452 .806** .379 .495 .360 .776* .589 r-value

p-value .056 .804 .737 .632 .739 .946 .025 .030 .022 .088 .196 .128 .067 .034 .097 .001 .007 .015 .222 .009 .314 .176 .341 .014 .095 p-value

r-value .317 .191 .308 .396 -.086 .162 .735* .740* .756* .641 .586 .627 .701* .662 .582 .682* .594 .440 .636 .833** .520 .393 .175 .512 .656 r-value

p-value .406 .622 .419 .292 .827 .676 .024 .023 .018 .063 .097 .071 .035 .052 .100 .043 .092 .236 .065 .005 .151 .295 .652 .158 .055 p-value

r-value .688* -.191 -.130 .209 -.010 .106 .671* .771* .742* .740* .692* .733* .586 .875** .835** .678* .736* .679* .212 .841** .318 .181 .335 .671* .456 r-value

p-value .040 .623 .738 .590 .981 .787 .048 .015 .022 .023 .039 .025 .097 .002 .005 .045 .024 .044 .584 .005 .404 .641 .378 .048 .218 p-value

r-value .583 .004 -.080 -.073 -.393 -.259 .516 .570 .559 .504 .524 .529 .510 .917** .664 .859** .851** .932*** .497 .862** .193 .254 .398 .648 .558 r-value

p-value .100 .991 .837 .852 .295 .501 .155 .109 .118 .167 .147 .143 .161 .001 .051 .003 .004 <0.001 .174 .003 .620 .509 .289 .059 .118 p-value

r-value .535 -.249 -.267 .460 .110 .306 .661 .787* .746* .610 .572 .605 .712* .665 .436 .552 .659 .863** .530 .852** .528 .435 .760* .907** .575 r-value

p-value .138 .519 .488 .213 .779 .423 .053 .012 .021 .081 .108 .084 .031 .050 .240 .123 .053 .003 .143 .004 .144 .242 .017 .001 .105 p-value

r-value .616 -.085 -.188 -.029 -.228 -.143 .463 .602 .550 .570 .599 .601 .372 .778* .548 .772* .906** .769* .304 .727* .103 .257 .512 .623 .344 r-value

p-value .078 .827 .629 .940 .555 .713 .209 .086 .125 .109 .089 .087 .324 .014 .126 .015 .001 .015 .427 .027 .792 .505 .159 .073 .365 p-value

r-value .264 -.189 -.264 .271 -.115 .080 .323 .411 .379 .286 .350 .329 .699* .414 .161 .178 .438 .767* .396 .657 .439 -.057 .426 .458 .613 r-value

p-value .493 .627 .492 .481 .768 .838 .396 .272 .315 .456 .356 .387 .036 .268 .680 .646 .238 .016 .291 .055 .237 .885 .252 .215 .079 p-value

r-value .688* -.169 -.099 .488 .242 .395 .783* .848** .838** .817** .593 .713* .757* .740* .768* .752* .609 .575 .519 .378 .465 .198 .426 .766* .736* r-value

p-value .040 .664 .799 .183 .530 .292 .013 .004 .005 .007 .092 .031 .018 .023 .016 .019 .082 .105 .152 .315 .207 .610 .253 .016 .024 p-value

r-value .691* -.273 -.194 .345 .048 .210 .622 .805** .737* .748* .716* .750* .820** .727* .770* .796* .734* .706* .647 .595 .871** .638 .507 .693* .583 r-value

p-value .039 .478 .618 .364 .903 .587 .073 .009 .024 .021 .030 .020 .007 .027 .015 .010 .024 .033 .060 .091 .002 .065 .163 .038 .099 p-value

r-value .909** -.755* -.702* .392 .513 .496 .489 .761* .649 .867** .772* .836** .591 .592 .389 .651 .484 .631 .512 .448 .754* .782* .324 .500 .116 r-value

p-value .001 .019 .035 .297 .158 .175 .182 .017 .059 .002 .015 .005 .094 .093 .300 .058 .186 .069 .158 .226 .019 .013 .395 .171 .766 p-value

r-value .906** -.719* -.594 .418 .500 .503 .523 .787* .679* .775* .655 .729* .619 .585 .420 .656 .472 .638 .483 .436 .754* .813** .961*** .732* .393 r-value

p-value .001 .029 .092 .262 .170 .168 .148 .012 .044 .014 .055 .026 .076 .098 .260 .055 .200 .064 .187 .241 .019 .008 <0.001 .025 .295 p-value

r-value .676* -.267 -.325 .345 .022 .196 .671* .789* .752* .716* .655 .701* .775* .826** .550 .694* .801** .915** .790* .778* .768* .850** .755* .721* .641 r-value

p-value .045 .487 .393 .364 .955 .614 .048 .012 .020 .030 .055 .035 .014 .006 .125 .038 .009 .001 .011 .014 .016 .004 .019 .028 .063 p-value

r-value .000 -.043 .061 .510 .063 .306 .357 .350 .362 .199 .182 .195 .781* .150 .303 .046 .059 .338 -.139 .711* .439 .537 .289 .337 .419 r-value

p-value 1.000 .912 .877 .161 .872 .423 .346 .355 .338 .609 .639 .616 .013 .700 .428 .907 .880 .373 .721 .032 .237 .136 .452 .376 .262 p-value
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4.3.2.2.1 Perirhinal cortex 

Comparisons involving the six sub-regions of perirhinal cortex found no significant 

difference in the numbers of Fos-positive cells between the Recency Test and Control 

groups (F < 1; Figures. 4.3A, 4.4). There was no differential effect on the rostral mid or 

caudal level of perirhinal cortex (F < 1) nor a difference between areas 35 or 36 (F1,16 = 

3.14, p = 0.095). Additionally, none of the interactions were significant (F < 1).  

For the Recency Test group, there were significant correlations between the Fos counts 

and the D1 index in rostral areas 35 and 36 (area 35: r = 0.76, p = 0.017; area 36: r = 

0.67, p = 0.048) but no significant correlations were found with D2 (p > 0.1). Similarly, 

mid area 35 and 36 correlated with D1 (area 35: r = 0.80, p = 0.01; area 36: r = 0.69, p = 

0.039), but again no significant correlations with D2 (area 35: p = 0.21; area 36: p = 

0.056).  However, a more consistent effect was seen in caudal 35 and 36 where c-fos 

counts significantly correlated with D1 (area 35: r = 0.80, p = 0.01; area 36: r = 0.72, p = 

0.027) and with D2 (area 35: r = 0.79, p = 0.012; area 36: r = 0.88, p = 0.002). No 

comparable D1 or D2 correlations were found for the Recency Control group. The only 

significant correlation in this group was between caudal area 35 and total exploration (r 

= 0.72, p = 0.03).   

4.3.2.2.2 Parahippocampal cortices 

Among these areas there was no evidence that the total counts of Fos-positive neurons 

differed between the Recency Test and Control groups (F < 1), nor was there a region of 

interest by group interaction (F < 1; Figure 4.3B).  

There were significant correlations between discrimination performance by the Recency 

Test rats and their Fos counts in the lateral entorhinal cortex (D1: r = 0.72, p = 0.029; 

D2: r = 0.76, p = 0.018) and in the medial entorhinal cortex (D1: r = 0.77, p = 0.014; D2: 

r = 0.72, p = 0.03). In the postrhinal cortex, a significant correlation was also found with 

D2 (r = 0.68, p = 0.045). Finally, the Recency Test group also had a significant 

correlation between Fos protein counts in area Te2 and the updated D2 ratio (r = 0.77, p 

= 0.014). The Recency Control group presented a very different picture as none of the 

parahippocampal cortical areas correlated with the discrimination parameters D1 or D2 

(presumably reflecting the very low D1 and D2 scores). This group did, however, show 

a significant correlation between the Fos counts in postrhinal cortex and total 

exploration (r = 0.69, p = 0.04).    
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Figure 4.3. Counts of Fos-positive cells in regions of interest following the two 

behavioural conditions in Experiment 2. 

Darker bars represent the Recency Test group while the lighter bars represent the Recency Control 

group.  Abbreviations: ATN, anterior thalamic nuclei; Aud, primary auditory cortex;  CA fields, 

intermediate (inter), septal (sept) and temporal (temp);  DG, dentate gyrus, intermediate (inter) and 

septal (sept);  dorsal Sub, dorsal subiculum;  LEC, lateral entorhinal cortex;  MEC, medial entorhinal 

cortex;  MD, medial dorsal thalamic nucleus;  PL, prelimbic cortex;  POR, postrhinal cortex; 

Reuniens, nucleus reuniens of thalamus;  Te2, area Te2; ventral Sub, ventral subiculum. Data are 

presented as group mean ± SEM. 
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Figure 4.4. Representative photomicrographs of perirhinal cortex. 

Photomicrographs depict Fos-positive cells in the perirhinal cortex (coronal section) from rats in the 

Recency Test (top panel) and Recency Control (bottom panel) groups. The areas shown are caudal 

perirhinal cortex (area 35 and 36) and hippocampal field CA1. Scale bar 200 µm. 

4.3.2.2.3 Hippocampal formation 

No significant differences were found in the total number of Fos-positive cells between 

the two behavioural groups in septal or intermediate CA1, CA3 or dentate gyrus, or 

temporal CA1 and CA3 (F< 1), nor was there an interaction between region and group 

(F < 1; Figure 4.3C). 

For the Recency Test group, significant positive correlations were found between D2 

and CA1 Fos counts (r = 0.79, p = 0.011) but not D1 (r = 0.57, p = 0.106).  Both 
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discrimination indices correlated with Fos counts in CA3 (D1: r = 0.67, p = 0.049; D2: r 

= 0.68, p = 0.045). In the same group, neither D1 nor D2 correlated significantly with 

the dentate gyrus counts (D1: r = 0.39, p = 0.29; D2: r = 0.60, p = 0.09). The Recency 

Control group failed to show any significant correlation between discrimination 

behaviour and Fos counts. (Note that the correlation data here refer to the subfield 

counts summed across the septal, intermediate and temporal hippocampus). 

There was also no evidence of a Fos count difference between the two behavioural 

groups (F < 1) in either division of the subiculum (dorsal or ventral), nor was there an 

interaction between the behavioural groups and the regions of interest (F < 1; Figure 

4.3C).  

In the Recency Test group, the ventral subiculum Fos counts showed significant 

correlations with both D1 (r = 0.78, p = 0.013) and D2 (r = 0.88, p = 0.002). There was 

also a borderline significant correlation between D1 and the dorsal subiculum Fos counts 

(r = 0.66, p = 0.052) but not for the D2 index (r = 0.55, p = 0.12).  In contrast, analyses 

using the Recency Control data found no significant correlations for either the ventral 

and dorsal subiculum with D1 or D2 (all p > 0.05).  

4.3.2.2.4 Prelimbic cortex and limbic thalamus 

As described above, the Fos counts for the three anterior thalamic nuclei were first 

combined as their individual counts were typically very low. Thus, the regions of 

interest to be compared were the anterior thalamic nuclei (ATN), the medial dorsal 

thalamic nucleus (MD), nucleus reuniens of the thalamus as well as the prelimbic cortex 

(Figure 4.3D). The counts of Fos-positive cells did not differ between the two 

behavioural groups (F < 1) and there was no interaction (F < 1).  

The Fos count in the nucleus reuniens correlated significantly with D1 (r = 0.72, p = 

0.03) in the Recency Test group; no other significant correlations were found between 

the behavioural measures (D1 and D2) and the Fos counts in the other limbic regions of 

interest in the Recency Test group.  There was a significant negative correlation in the 

Recency Control group between MD counts and both the D1 (r = -0.76, p = 0.019) and 

the updated D2 (r = -0.70, p = 0.035) discrimination indices. In addition, the MD counts 

in this group significantly correlated with exploration (r = 0.91, p = 0.001). Also, in the 

Recency Control group the ATN Fos counts correlated significantly with D1 (r = -0.72, 

p = 0.029) and total exploration (r = 0.91, p = 0.001), but not with the updated D2 (r = 

0.59, p = 0.092).  Finally, the Fos counts in nucleus reuniens and the prelimbic cortex 
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correlated significantly with total exploration (r = 0.70, p = 0.045; r =  0.69, p = 0.039 

respectively) in the Recency Control group (D1 and D2: p > 0.4). 

4.3.2.2.5 Auditory cortex  

No differences were found between the two groups in this area (t16 = 1.21, p = 0.24; 

Figure 4.3). There was, however, a positive correlation between Fos expression and the 

D2 ratio in the Recency Test group (r = 0.88, p = 0.002).  No significant correlations 

were found between behaviour and region of interest in the Recency Control group. 

4.3.3 Structural equation modelling 

4.3.3.1 Testing previously derived model of familiar object processing  

The first network model to be tested was that previously derived for familiar object 

processing (Chapter 3). This network was composed of parallel projections between area 

Te2 and both perirhinal and lateral entorhinal cortices. Perirhinal cortex also connected 

with lateral entorhinal cortex which then projected directly to the septal region of CA1. 

Fos data derived from both the Recency Test (Figure 4.5A) and Recency Control (Figure 

4.5B) groups were tested on this network model. Overall, this model was found to attain 

a good level of fit for both behavioural groups (Recency Test: χ2
2 = 2.21, p = 0.33; CFI = 

0.99; RMSEA = 0.11; Recency Control: χ2
2 = 0.16, p = 0.92; CFI = 1.0; RMSEA = 0.0). 

Additionally, when the Fos data obtained from the current Recency Test group were 

stacked against Fos data generated by the Sham Familiar group in Chapter 3 on the same 

network model there was no difference between the groups (χ2
4 Diff  = 4.37, p= 0.36). In 

contrast, when the data from the current Recency Test group were tested on the optimal 

network model derived for novel object processing (Figure 3.12E) in the Sham Novel 

group in Chapter 3 the indices of fit were found to be outside of acceptable levels (χ2
5 = 

6.96, p = 0.22; CFI = 0.93; RMSEA = 0.22). Furthermore, when the current Recency 

Test group was stacked against data from the Sham Novel group in Chapter 3, on the 

novel object network model, a significant difference was detected between the groups 

(χ2
5 Diff = 12.6, p = 0.004). Thus it can be concluded that the relationships between these 

regions differ when rats are discriminating novel as compared to familiar objects. 
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Figure 4.5. Model of familiar object processing 

Depiction of data from the current Recency Test (A) and Recency control (B) groups tested on the 

network model previously derived for familiar object processing (Experiment 2).  The model fit is 

provided at the bottom of each panel (CFI, comparative fit index; RMSEA, root mean square error of 

approximation). The strength of the causal influence of each path is denoted both by the thickness of 

the arrow and by the path coefficient next to that path. The number above each region is the 

proportion of its variance that can be explained by its inputs. Sites depicted: area Te2 (Te2); subfield 

CA1 from the septal region of the hippocampus (Sept CA1); lateral entorhinal cortex (LEC); 

prelimbic cortex (PL); perirhinal cortex (PRH). * p < 0.05 ** p < 0.01; *** p < 0.001.   

4.3.3.2 Extended models for recency conditions 

The next models to be tested were intended to extend this existing model of familiar 

object processing to include regions beyond the medial temporal lobe that have been 

shown to be involved in recency memory (Mitchell & Laiacona, 1998; Hannesson et al., 

2004a,b; Wolff et al., 2006; Cross et al., 2013; Dumont & Aggleton, 2013). The Fos 

counts from areas 35 and 36 of the perirhinal cortex were combined, but the rostral, mid, 

and caudal perirhinal regions remained separate as previous studies have identified the 

particular significance of caudal perirhinal cortex for visual recognition (Albasser et al., 

2009, 2010b; Chapter 3). Within the hippocampus, the septal, intermediate and temporal 

parts of CA1, CA3 and dentate gyrus were combined prior to testing for network models 

as preliminary analyses based on the separate results from each division (septal, 

intermediate or temporal) failed to create acceptable models. The counts from the three 
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anterior thalamic nuclei were summed as the individual scores were low. Only the dorsal 

subiculum was used to create models as it has been demonstrated that it is the dorsal 

subiculum that principally projects to the anterior thalamic nuclei (Wright et al., 2013). 

 

 

Figure 4.6. Optimal models for recency conditions. 

Schematics of the network models with best fit for the Recency Test (A, B) and Recency control (C) 

groups (Experiment 2).  The model fit is provided at the bottom of each panel (CFI, comparative fit 

index; RMSEA, root mean square error of approximation). The strength of the causal influence of 

each path is denoted both by the thickness of the arrow and by the path coefficient next to that path. 

Note, the dashed pathways involving the prelimbic cortex (PL) have been added to the first Recency 

Test model as these provide a further model with good fit. The number in brackets is the path 

coefficient when the prelimbic cortex is added to the Recency Test model and the additional fit 

indices in italics are related to this model. The number above each region is the proportion of its 

variance that can be explained by its inputs. Sites depicted: anterior thalamic nuclei (ATN); dorsal 

subiculum (Dorsal Sub); hippocampal subfield CA1; lateral entorhinal cortex (LEC); medial dorsal 

thalamic nucleus (MD); prelimbic cortex (PL); perirhinal cortex (PRH). ** p < 0.01; *** p < 0.001.   
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4.3.3.2.1 Recency Test group 

It was possible to generate three very closely related models with good fit (Figure 4.5A, 

B), the only difference being whether prelimbic cortex was added to the network, and if 

so, where.  The first network was a serial model involving a connection between caudal 

perirhinal cortex and lateral entorhinal cortex and then successive projections to CA1, 

dorsal subiculum, and the anterior thalamic nuclei (χ
2

6 = 4.57, p = 0.60; CFI = 1.0; 

RMSEA = 0.0; Figure 4.5A).  The second model involved additional projections from 

the dorsal subiculum to the prelimbic cortex and between the prelimbic cortex to the 

anterior thalamic nuclei (χ
2

9 = 7.83, p = 0.55; CFI = 1.0; RMSEA = 0.0; Figure 4.5A). A 

third acceptable model again involved projections between perirhinal cortex and lateral 

entorhinal cortex, thence onto CA1, with CA1 projecting to both prelimbic cortex and 

the dorsal subiculum, with dorsal subiculum subsequently projecting to the anterior 

thalamic nuclei and an addition connection between prelimbic cortex and the anterior 

thalamic nuclei (χ2
9 = 9.24, p = 0.42; CFI = 0.99; RMSEA = 0.06).  In all three models, 

there were significant pathways from caudal perirhinal cortex to lateral entorhinal cortex 

(p = 0.002) and from lateral entorhinal to CA1 (p < 0.001). Also, as noted above, there 

were significant correlations between D1 and D2 with Fos counts in the perirhinal 

cortex, lateral entorhinal cortex, CA1 and CA3. None of the acceptable models for the 

Recency Test group involved the entorhinal projections to either dentate gyrus or CA3. 

4.3.3.2.2 Recency Control group 

Only one acceptable model involving parahippocampal and hippocampal regions could 

be derived (Figure 4.5C). Like the Recency Test group, the model for the Recency 

Control group again included caudal perirhinal cortex, the lateral entorhinal cortex and 

CA1, but in addition the model incorporated the prelimbic cortex and the medial dorsal 

thalamic nucleus (MD). The resulting network created a model with good fit (χ2
3 = 1.39, 

p = 0.71; CFI = 1.0; RMSEA = 0.0). Three of the pathways involved in the models were 

significant; caudal perirhinal cortex to MD (p < 0.001), lateral entorhinal cortex to CA1 

(p < 0.001) and the pathway from MD to the prelimbic cortex (p = 0.003).  
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4.3.3.2.3 Comparison between the models for Recency Test and Recency Control 

groups 

Several acceptable models were generated for the Recency Test group; the comparisons 

to follow will be based on the network model depicted in Figure 4.6A that includes 

prelimbic cortex. This decision is based on the very good level of fit, as well as the 

inclusion of the prelimbic cortex in the model as this was hypothesised during study 

design. 

Initially data from the Recency Control group were tested on the model derived for the 

Recency Test group (Figure 4.7A); this was found to have poor fit (χ2
9 = 12.5, p = 0.19; 

CFI = 0.88; RMSEA = 0.22). In the reverse comparison, the Fos data obtained from the 

Recency Test group were then tested on the optimal model for the Recency Control 

group (Figure 4.7B); the fit of this model was extremely poor (χ2
3 = 15.0, p = 0.002; CFI 

= 0.66; RMSEA = 0.71).   

A stacking procedure was then undertaken between the Recency Test and Recency 

Control groups. Initially the data from these groups were stacked on the optimal model 

for the Recency Test group (Figure 4.7A); the structural weights of each of the paths 

were constrained such that they had to have the same value in both groups, i.e., setting 

the corresponding pathways in each of the groups to be identical. There was no 

significant difference between the model in which the structural weights of the paths 

were constrained to be the same and the model in which they were free to vary (χ2
6 Diff = 

9.16, p = 0.16).  This is not necessarily surprising considering both groups are exploring 

objects that are familiar due to a single previous exposure and the pathways from 

perirhinal cortex to lateral entorhinal cortex and then to CA1 are a component of both 

optimal models. However, the groups do differ from one another as the optimal models 

for each group are different (Figure 4.6).  Furthermore, when the same stacking 

procedure is carried out based on the optimal model for the Recency Control group 

(Figure 4.7B) a significant difference was found between the model in which the 

structural weights are free to vary and the model in which they are constrained to be the 

same (χ2
7 Diff = 19.4, p = 0.007). This illustrates that the Fos data from the Recency Test 

group does not fit the Recency Control group model.  When the pathways were 

unconstrained individually the only one to significantly improve the fit of the model was 

that between the perirhinal cortex and MD (χ2
1 Diff = 12.4, p = 0.0004; all other paths: χ2

1 

Diff < 2, p > 0.13). 
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Figure 4.7. Poor fitting models of Recency data tested on the optimal model for the 

other group. 

Schematics of the network models for the Recency Control group tested on the optimal model for the 

Recency Test group (A) and Recency Test group tested on the optimal model for the Recency Control 

group (B) (Experiment 2).  The model fit is provided at the bottom of each panel (CFI, comparative fit 

index; RMSEA, root mean square error of approximation) and models with unacceptable fit are 

represented with a pale grey background. The strength of the causal influence of each path is denoted 

both by the thickness of the arrow and by the path coefficient next to that path. The number above 

each region is the proportion of its variance that can be explained by its inputs. Sites depicted: anterior 

thalamic nuclei (ATN); dorsal subiculum (Dorsal Sub); hippocampal subfield CA1; lateral entorhinal 

cortex (LEC); medial dorsal thalamic nucleus (MD); prelimbic cortex (PL); perirhinal cortex (PRH). * 

p < 0.05 ;** p < 0.01; *** p < 0.001.   

 

4.4 Discussion 

The present experiment used the expression of c-fos to map neuronal activity associated 

with object recency memory in rats.  By applying structural equation modelling to the 

counts of Fos-positive cells, models have previously been derived that interlink medial 

temporal activity associated with recognition memory (Albasser et al., 2010b; Chapter 

3).  The present study sought to confirm and extend these investigations by deriving 

activity models for recency memory, i.e., temporal order memory.   

The Recency Test group in Experiment 2 was able to discriminate between familiar 

objects separated by an interval of 110 minutes. In contrast, the Recency Control rats 

were given pairs of familiar objects that were separated by, at most, one minute (but 

often in practice, only seconds). In this way, it was possible to very closely match the 
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sensorimotor experiences of the two groups. The Recency Control group showed no 

evidence of being able to discriminate between the test objects.  Thus, although the 

control rats were given a recency problem, the behavioural evidence indicated that the 

rats in this condition treated the objects as though they were temporally 

indistinguishable.   

An important assumption is that in Experiment 2 the Recency Test group relied on 

recency memory.  It has been suggested that in this type of recency task, that employs 

two discrete sample phases, greater exploration time dedicated to the object from the 

first sample phase may actually reflect the fact that the rat had forgotten that it 

previously encountered this object (Ennaceur, 2010). This would essentially mean that 

the task was an object recognition task. In order to address this possibility, all rats were 

first tested on their ability to distinguish novel from familiar objects (Experiment 1).  

This initial experiment used the same retention delays for the familiar objects as those 

subsequently used for the recency memory tests in Experiment 2.  The ability of the rats 

to recognise novel objects, when compared with familiar objects encountered 110 

minutes previously in sample phase 1 of Experiment 1, confirmed that they could retain 

familiarity information over the time intervals subsequently used in the recency tests.  

This finding is important as it shows that the recency tests did involve the rats 

discriminating between two familiar objects.  A caveat is that it cannot be proven that 

this assumption applies to each individual trial as the results from Experiment 1 reflect 

cumulative data from multiple trials, while the objects, by necessity, were different from 

those in Experiment 1. 

Performance in the Recency Test condition, as measured by the discrimination 

measures, cumulative D1 and updated D2, correlated with the Fos-positive cell counts in 

several regions of interest; most notably within the parahippocampal cortex and 

hippocampus.  Significant positive correlations with recency performance were found 

for both areas 35 and 36 along the rostral-caudal extent of the perirhinal cortex. Other 

positive correlations between recency discrimination performance and Fos counts were 

found in area Te2 and lateral entorhinal cortex. There is a danger of Type 1 errors due to 

multiple comparisons based on the relatively low numbers of rats in the Recency Test 

group and the total numbers of correlations.  There was, however, a strong clustering of 

significant correlations in the regions that have been associated with recency memory in 

previous studies. For example, the link between recency memory performance and 

activity in the perirhinal cortex builds on considerable evidence highlighting the role of 
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this area in processing complex visual information, including information to help resolve 

both visual recognition and visual recency problems (Fahy, 1993; Brown & Xiang, 

1998; Brown & Aggleton, 2001; Hannesson et al., 2004a; Winters et al., 2008; Barker et 

al., 2007; Barker & Warburton, 2011a). Moreover, these correlations were strongest and 

most consistent in the caudal region of perirhinal cortex. This fits with the mounting 

evidence that the caudal region of perirhinal cortex has a greater role in visual object 

processing than more rostral levels (Zhu et al., 1995; Wan et al., 1999, 2004; Warburton 

et al., 2003, 2005; Albasser et al., 2009, 2010b; Chapter 3).  The correlations presented 

here extend this object processing association to include the visual association area, Te2, 

and the entorhinal cortex; regions that are both strongly interconnected with the 

perirhinal cortex (Burwell & Amaral, 1998b; Furtak et al., 2007). Area Te2 has 

previously been implicated in object recognition memory, with evidence from lesion 

studies (Ho et al, 2011) and c-fos expression studies (Zhu et al., 1995b, 1996, 1997; Wan 

et al., 1999, 2004; Albasser et al., 2010b).  The present, additional links with recency 

memory also builds on previous electrophysiological evidence that Te2 cells can signal 

temporal order differences (Zhu et al., 1995a). Additionally, significant correlations 

were observed between the recency memory performance in the Recency Test group and 

the Fos-positive cell counts in CA1, CA3 and subiculum. This regional pattern parallels 

existing literature on hippocampal lesion studies. These have not only shown the 

importance of the hippocampus for object recency memory (Barker et al., 2007; Barker 

& Warburton, 2011a), including when tested in the bow-tie maze (Albasser et al., 2012), 

but have also shown that this hippocampal involvement depends on the perirhinal cortex 

(Warburton & Brown, 2010; Barker & Warburton, 2011b).  Further, neuronal recording 

studies have implicated the hippocampus in encoding the passage of time (Manns et al., 

2007; Kraus et al., 2013). 

There were no differences found between the two behavioural conditions in the number 

of Fos-positive cells in any of the analysed regions of interest. This may reflect how well 

matched the sensorimotor demands of the groups were. There are studies that have 

demonstrated a similar overall lack of absolute regional differences, while the 

underlying correlations between the same regions were different (Poirier et al., 2008; 

Chapter 3). These patterns of correlations were explored with structural equation 

modelling. 

The first network model to be tested was the optimal model derived for group Sham 

Familiar in Chapter 3. This model begins with the visual association area, Te2, which 



123 

 

projects to both the caudal region of the perirhinal cortex and adjacent lateral entorhinal 

cortex. The perirhinal cortex also converges on lateral entorhinal cortex, which projects 

directly to CA1 in the septal region of the hippocampus. This network model was found 

to have good fit for both behavioural conditions in the current experiment. Furthermore, 

when data from the current Recency Test group were directly compared on this network 

model with data from group Sham Familiar in Chapter 3, no differences were found 

between them. In the experiment described in Chapter 3, the Sham Familiar rats were 

simultaneously shown a highly familiar object (last seen in the previous trial) and an 

object that is less recent but still highly familiar (seen in all 12 previous sessions). The 

same protocol was also used for ‘Group Familiar’ in Albasser et al., 2010b.  

Consequently, these familiarity conditions involved recency judgements; albeit less 

temporally controlled.  It is, therefore, striking that in four behavioural conditions 

involving familiar objects (Recency Test, Recency Control, group ‘Sham Familiar’ from 

Chapter 3 and ‘Group Familiar’ from Albasser et al., 2010b), the optimal network model 

involved direct lateral entorhinal cortex to CA1 interactions but not lateral entorhinal to 

dentate gyrus or CA3 interactions.  The same patterns  are echoed in a zif268 study of 

spatial learning, as familiar spatial problems preferentially engaged entorhinal cortex to 

CA1 pathways, while more novel spatial problems engaged pathways from entorhinal 

cortex to the dentate gyrus and CA3 (Poirier et al., 2008).    

Further to this, when the present Recency Test group was tested on the best fitting model 

associated with the discrimination of novel stimuli, i.e., recognition memory, that was 

derived for group ‘Sham Novel’ in the experiment outlined in Chapter 3, the fit was 

inadequate.  For object recognition memory, the optimal network had parallel pathways 

from area Te2 to the lateral entorhinal cortex and the perirhinal cortex, the perirhinal 

pathway then converged on the lateral entorhinal cortex (Figure 3.12E). Subsequently 

the lateral entorhinal cortex projected to CA3 and then on to CA1. The lack of fit of the 

present recency data to that model was confirmed by the result of the stacking procedure 

that directly compared Fos data from the current Recency Test group with data from the 

Sham Novel group in Chapter 3 on the network of novel object recognition (Figure 

3.12E). The dataset for each group were found to be significantly different from one 

another. The optimal network model derived for ‘Group Novel’ in Albasser et al., 

2010b, which also performed a novel object recognition task, involved parallel pathways 

from the lateral entorhinal cortex; one to the dentate gyrus and another to CA1. The 

dentate gyrus pathway next involved CA3, which then converged on CA1. Thus, it 

appears that the presence of novelty led to different patterns of hippocampal 



124 

 

engagement, involving greater parahippocampal interaction with dentate gyrus and/or 

CA3.  

Following these initial SEM analyses, the subsequent aim of this study was to extend the 

network models to include regions beyond the medial temporal lobe but known to 

interact with medial temporal lobe structures to support associative memory (Aggleton, 

2012).  The individual septotemporal levels (septal, intermediate and temporal) of CA1, 

CA3 and dentate gyrus were collapsed as this allowed for simplification of the models to 

be tested, as, for example, previous models have been based in the septal region of the 

hippocampus but the temporal level of CA1 preferentially projects to prelimbic cortex 

(Conde et al., 1995). Additionally, preliminary investigations based on the separate 

results from each hippocampal level failed to generate models of acceptable fit.   

Perhaps unsurprisingly, based on the fact that the data from both groups fit the same 

familiar object processing model, the optimal c-fos network models derived specifically 

for the Recency Test and Recency Control conditions individually were quite similar. 

Based on the preceding analyses this is hypothesised to reflect the fact that both 

conditions involved objects that were familiar. Both networks involved pathways from 

the caudal perirhinal cortex to lateral entorhinal cortex and, thence, to CA1. The dorsal 

subiculum was used to create models as it has been demonstrated that it is the dorsal 

rather than the ventral subiculum or CA subfields of the hippocampus that principally 

project to the anterior thalamic nuclei (Swanson & Cowen, 1975; Sikes et al., 1977; 

Wright et al., 2013). Neither the dentate gyrus nor CA3 could be incorporated into 

models with acceptable fit. The two networks did, however, differ as the main Recency 

Test model was linear while the Recency Control model had parallel pathways from the 

perirhinal cortex (Figure 4.6). As a consequence, the Recency Control model contained 

fewer degrees of freedom, so limiting its ability to pick out the key pathways.  

The network models for both behavioural groups involved the prelimbic cortex, as well 

as limbic thalamic nuclei.  Prelimbic cortex has repeatedly been implicated in recency 

memory (Hannesson et al., 2004a,b; DeVito & Eichenbaum, 2011; Cross et al., 2013). 

Additionally, it is known to project to the anterior thalamic nuclei, specifically to the 

anteromedial nucleus. Also, there are direct projections from CA1 and the subiculum to 

prelimbic cortex (Conde et al., 1995; Vertes, 2004), further supporting the models 

derived for the Recency Test group. In support of the Recency Control model, the 

medial prefrontal cortex is also known to be densely reciprocally connected to the 

medial dorsal thalamic nucleus (Groenewegen, 1988) and there is disconnection 
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evidence that these areas operate in conjunction to support recency discriminations 

(Cross et al., 2013).  Further, the medial dorsal thalamic nucleus is known to receive 

projections from the deep layers of lateral entorhinal cortex (Groenewegen, 1988).  

Lesion studies have implicated the anterior thalamic nuclei in some forms of recency 

memory (Mitchell & Dalrymple-Alford, 2005; Wolff et al., 2006; Dumont & Aggleton, 

2013). In the present study, the anterior thalamic nuclei were incorporated in the best 

fitting models for the Recency Test group while the medial dorsal nucleus was 

incorporated in the Recency Control model.  The implication is that the anterior thalamic 

nuclei and medial dorsal nuclei have subtly different roles concerning familiar objects; 

this is conceivable based on their very different properties.  In particular, the anterior 

thalamic nuclei have been repeatedly implicated in episodic memory (Aggleton & 

Brown, 1999, 2006; Carlesimo et al., 2011), and it could be argued that tests of recency 

memory which involve intervening events, as well the passage of time per se, place 

added demands on episodic memory (see Eacott & Easton, 2010).  In doing so, one 

would predict a particular link between the subiculum and anterior thalamic nuclei for 

such recency problems as seen here. An inconsistency is that these anterior thalamic 

lesion studies found deficits in tests of recency memory that involved comparing stimuli 

that were encountered in a single sequence, rather than when an intervening event was 

introduced between stimulus presentations (Wolff et al., 2006; Dumont & Aggleton, 

2013). Thus, the opposite pattern to the one presented here may have been expected; i.e. 

anterior thalamic involvement in the Recency Control rather than the Recency Test 

model. However, there were additional differences between those studies and the present 

one. Wolff et al., (2006) employed a different stimulus type (odours). Dumont and 

Aggleton (2013) used fewer objects with shorter retention delays. Furthermore, in a 

single lesion study it was demonstrated that lesions of the anterior thalamic nuclei cause 

a deficit in a recency memory task that involved a delay while a lesion to the 

posteromedial thalamus, which included the medial dorsal nucleus, did not (Mitchell & 

Dalrymple-Alford, 2005). Thus, further work is required to elucidate the precise nature 

of the role that these thalamic nuclei play in recency memory. The present models do, 

however, provide support for the parahippocampal–prefrontal network for 

discriminating the familiarity and recency of occurrence of objects (Aggleton, 2012). 

4.4.1 Summary 

In summary, tasks involving familiar stimuli (recency memory) result in networks of 

activation that differ appreciably from those networks associated with novel stimuli 
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(recognition memory). Although all of the networks involve the hippocampus, lesion 

evidence shows that this structure is often not required for successful novelty detection 

(Mumby, 2001; Winters et al., 2004; Forwood et al., 2005; Brown et al., 2010), although 

it is consistently required for recency memory (Agster et al., 2002; Fortin et al., 2002; 

Barker et al., 2007; Barker & Warburton, 2011a,b; but see Chapter 3).  Furthermore, 

recency memory appears especially linked with the CA1 field, with supporting evidence 

from both lesion studies (Gilbert et al., 2001; Hoge & Kesner, 2007; Kesner et al., 2010) 

and the present c-fos analyses. The implication is that object novelty is initially detected 

upstream from the hippocampus and this information then moderates modes of 

hippocampal processing.  This change in the hippocampal processing of novel stimuli 

could then result in better learning of stimulus attributes, via activity in the dentate gyrus 

and CA3.  This enhanced attribute information can then aid recognition judgments as the 

associated information may increase the confidence of novel versus familiar 

discriminations (Eichenbaum et al., 2010). At the same time, the novelty signal itself is 

often sufficient to guide object recognition and so does not require the integrity of the 

hippocampus.  
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5 Mapping activity patterns for 

encoding a novel context following 

removal of the perirhinal cortex in 

rats 

5.1 Introduction 

The hippocampus is central to processing spatial aspects of memory; this has been 

demonstrated across many experimental paradigms including electrophysiological 

recording studies, lesion studies and disconnection studies (O’Keefe & Dostrovsky 

1971; Morris et al., 1982; Moser et al., 1993; O’Keefe & Burgess, 1996; Gaffan & 

Eacott, 1997; Broadbent et al., 2004; Warburton & Brown, 2010; Albasser et al., 2013). 

The perirhinal cortex is vitally involved in successful recognition memory (Suzuki et al., 

1993; Mumby & Pinel, 1994; Xiang & Brown, 1998; Barker et al., 2007); the ability to 

discriminate novel from familiar stimuli (Mandler, 1980; Brown & Aggleton, 2001). 

The contribution of the perirhinal cortex to spatial memory is more contentious. Many 

lesion studies have demonstrated that perirhinal cortex is not required for explicit tests of 

spatial memory (Aggleton et al., 1997; Ennaceur & Aggleton, 1997; Glen & Mumby 

1998; Machin et al., 2002). Indeed, these processes have been doubly dissociated in a 

single study; hippocampal lesions were shown to cause a deficit in a spatial task but not 

a recognition memory task, while, perirhinal lesions induced the opposite pattern of 

results (Winters et al., 2004). However, there are also perirhinal lesion studies that tax 

spatial memory and report deficits (Wiig & Bilkey, 1994a,b; Liu & Bilkey, 1998a,b, 

2001; reviewed in Aggleton et al, 2004). Thus, descriptions of an overarching medial 

temporal lobe memory system, in which all of the components have similar functional 

properties and inter-dependence, persist (Squire & Zola-Morgan, 1991; Wixted & 

Squire, 2011).   

One component of spatial processing is contextual learning; the hippocampus is known 

to be involved in learning about the context in which an event occurred. This has been 

demonstrated using the contextual fear conditioning paradigm. This involves placing a 

rat in a novel context, known as the unconditioned stimulus. Subsequently, an aversive 
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stimulus is delivered, most commonly a mild electric shock to the foot, which is known 

as the unconditioned stimulus. When a normal rat is later returned to the conditioned 

context it will express ‘threat detection memory’ by freezing (Philips & LeDoux, 1992). 

Hippocampal lesions impair contextual learning in this paradigm and this impairment 

presents itself as a reduction in freezing behaviour when the rat it returned to the 

conditioned context (Philips & LeDoux, 1992; Chen et al., 1996; Good & Honey, 1997; 

Maren & Fanselow, 1997; Richmond et al., 1999; Sachetti et al., 1999; Lee & Kesner, 

2004). This effect is thought to be based on the role of the hippocampus in contextual 

learning as hippocampal lesions disrupt contextual memory in similar appetitive tasks 

(Honey & Good, 1993; Good & Bannerman, 1997) as well as tests of spontaneous 

explorations of a familiar object in a novel context or location (Mumby et al., 2002; 

Good et al., 2007). Although it should be noted that there is some evidence that only the 

integration of all three parameters (object, location and context) require the 

hippocampus (Langston & Wood, 2010).  

If the perirhinal cortex and hippocampus are functionally interdependent then perirhinal 

lesions would be expected to cause hippocampal dysfunction in a hippocampal 

dependent task as hippocampal activity should be high and so would potentially be more 

susceptible to perturbation. However, if these two regions function in an independent 

manner then perirhinal lesions would not affect intrinsic hippocampal activity. This 

experimental design was intended to complement the study described in Chapter 3. In 

that experiment, the interdependence of the hippocampus and perirhinal cortex was 

examined following a behavioural task known to be dependent on the perirhinal cortex. 

In the present experiment the objective was to examine if excitotoxic lesions to the 

perirhinal cortex cause activity dysfunction within the hippocampus or alterations to its 

intrinsic interactions following exposure to a novel context, a task known to engage the 

hippocampus. 

An associated aim was to examine the activity of other regions associated with spatial or 

contextual memory processing in the medial temporal lobe. Of particular interest were 

the postrhinal cortex and medial entorhinal cortex. These two cortical regions, along 

with the hippocampus, constitute the ‘where’ pathway as set out by the binding of item 

and context model and other similar models of medial temporal lobe regional 

interactions (Diana et al., 2007; Eichenbaum et al., 2007; depicted in Figure 1.11). A 

large proportion of the evidence for this ‘where’ network is derived from studies that 

implicate these regions in spatial processing activity in isolation, for example, in 
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traditional lesion studies. Thus, a further aim of the present study was to examine the 

functional interactions between these regions in the intact brain. This allowed for 

activity in the ‘where’ pathway be explicitly tested in relation to novel context 

exploration, with the additional possibility of anatomically refining the proposed 

interaction between the postrhinal cortex, medial entorhinal cortex and hippocampus.  

The perirhinal cortex has reciprocal connections with both the medial entorhinal and 

postrhinal cortices (Burwell & Amaral, 1998a,b) and thus, a further possibility is that 

previously observed perirhinal induced deficits in spatial learning may be due to 

deafferentation of these regions. This could include perturbations in their interactions 

with each other or with the hippocampus. Comparisons of cortical interactions between 

the surgical control and perirhinal lesion rats also allow for testing of this possibility. 

Expression of the immediate-early gene (IEG) c-fos was again employed as a proxy 

marker of neuronal activity. This IEG was chosen due to its sensitivity to novelty; its 

activity is reliably increased in the perirhinal cortex when rats are passively shown novel 

stimuli (Zhu et al., 1995b, 1996; Wan et al., 1999). Perirhinal and hippocampal Fos up-

regulation is seen when rats actively explore objects in order to discriminate novel from 

familiar (Albasser et al., 2010). This perirhinal upregulation is required for stable 

recognition memory (Seoane et al., 2012). Critically, expression of c-fos has also been 

shown to be sensitive to spatial novelty (Wan et al., 1999; Vann et al., 2000; Jenkins et 

al., 2002, 2004; Sheth et al., 2008) and has been used to assess the neuronal activity 

associated with spatial memory (Tischmeyer & Grimm, 1999; Jenkins et al., 2003). It 

has also been demonstrated that c-fos expression in the hippocampus is essential for 

encoding spatial memories (He et al., 2002). Importantly, it has been shown that c-fos 

expression in the perirhinal cortex and hippocampus is sensitive to the effect of 

contextual novelty as well as to explicit tests of spatial memory (Zhu et al., 1997). 

Additionally, increased Fos expression in the perirhinal cortex has been associated with 

contextual fear conditioning (Albrechet-Souza et al., 2011). It has also been 

demonstrated that memory engrams in the hippocampus related to a specific context can 

be reactivated in a different context, when the genetic manipulation is placed under 

control of the c-fos promotor (Liu et al., 2012; Ramirez et al., 2013).  This further 

implicates the expression of c-fos in this type of contextual processing.  

Network models of c-fos activity associated with object recognition link 

parahippocampal sites to the hippocampus with altered patterns depending on whether 

the stimuli are novel or familiar (Albasser et al., 2010b; Chapter 3). Additionally, 
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another study that employed an IEG-imaging paradigm examined network models 

within the hippocampus following an ‘early’ or ‘late’ spatial learning task (Poirier at al., 

2008). Although this study exploited expression of the IEG, Zif268, similar patterns of 

intra-hippocampal interactions were seen. Medial temporal lobe processing of novel 

stimuli (objects or spatial cues) was associated with activation of the perforant pathway, 

whereas processing of familiar stimuli was found to rely more heavily on the  direct 

connection between the entorhinal cortex and CA1; the temporoammonic pathway 

(Poirier at al., 2008; Albasser et al., 2010b; Chapter 3). Thus, a further aim of the study 

was to explore if these patterns can be generalised to early contextual learning; i.e. are 

there general patterns of correlated activity associated with learning about novelty in the 

environment. 

To test the importance of the perirhinal cortex on hippocampal activity, a group of rats 

with excitotoxic lesions to the perirhinal cortex and another group with sham surgeries 

were exposed to a novel context. Two other groups (perirhinal and sham lesions) were 

exposed to their home-cage and so served as baseline controls for Fos expression. The 

initial goal of the study was to assess if perirhinal lesions altered c-fos activity levels in 

the hippocampus and entorhinal cortex.  

Then, using the c-fos activity data, specific networks of inter-correlated regions 

previously associated with learning about novelty were assessed using structural 

equation modelling. Following this, optimal models for exposure to a novel context were 

derived and the impact of perirhinal lesions on these networks was assessed.  

5.2 Materials and Methods 

5.2.1 Animals 

Subjects were 56 male, Lister Hooded rats (Harlan). They were housed as described in 

General Methods section 2.2. These rats were from two cohorts of animals; JAR166 and 

JAR169. Rats in JAR166 (n = 29) were approximately 11 months old at the beginning 

the c-fos imaging study. Eighteen of these rats had previously received lesions to the 

perirhinal cortex while 11 served as their surgical controls. Rats from cohort JAR169 (n 

= 27) were approximately 7 months old at the beginning the present experiment. Of 

these rats, 15 had received lesions to the perirhinal cortex while 12 received sham 

surgeries. Prior to the current experiment both cohorts received object recognition 

memory tasks in the bow-tie maze; JAR166 were tested twice while JAR169 were tested 

three times. Additionally, both cohorts received a single object recognition test in an 
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open field paradigm. Rats were not behaviourally tested for at least two week before the 

current experiment. 

5.2.2 Surgery 

The rats were approximately three months old at the time of surgery. The surgeries were 

carried out by Dr. C. Olarte Sanchez. The same procedure was followed for both cohorts 

of animals. In total, 33 rats received bilateral perirhinal cortex lesions, while 23 rats 

served as surgical controls. All rats weighed between 285g and 300g at the time of 

surgery. Anaesthesia was induced in all animals using a mixture of oxygen and 

isoflurane gas, before placing them in a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA, USA), with the incisor bar set at +5.0 mm to the horizontal plane.  A 

midline sagittal incision was made in the scalp and the skin was retracted to expose the 

skull. A craniotomy was made above the injection sites. The PRH lesions were made by 

injecting a solution of N-methyl-d-aspartate (NMDA; Sigma, Poole, UK) diluted to 

0.09M in PBS (0.1M, pH 7.4) using a 1µm Hamilton syringe (gauge 26s, outside 

diameter 0.47 mm) held with a micro-injector (Kopf Instruments, Model 5000). Bilateral 

injections of NMDA were made at a rate of 0.10 µL ⁄ min, with a subsequent diffusion 

time of four minutes. The animals received three injections in each hemisphere (for co-

ordinates and volumes see Table 5.1). Rats in the surgical control group received 

identical treatment, except that the dura was perforated with a 25-gauge Microlance 3 

needle (Becton Dickinson, Drogheda, Ireland) and no fluid was infused into the brain. 

Table 5.1. Stereotaxic coordinates for lesions of the PRH. 

Anteroposterior Mediolateral Dorsoventral Volume (µL) 

-1.8 ±5.9 -9.3 0.225 

-3.4 ±6.1 -9.6 0.225 

-5.0 ±6.2 -9.0 0.225 

 

5.2.3 Apparatus – Activity boxes 

The rats were tested in a novel environment which monitored their locomotor activity. A 

3 x 6 activity test cage rack was located in a novel room. The 18 activity test cages (Paul 

Fray, Cambridge, UK) had dimensions of 56 cm × 39 cm × 19 cm and contained two 

photobeams placed 20cm apart, positioned 18 cm from the short walls (Figure 5.1). 
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Figure 5.1 Schematic of activity box. 

Schematic of activity box from above with dimensions in centimetres. 

5.2.4 Behavioural testing 

The animals were divided between two behavioural conditions creating four groups. The 

animals that received perirhinal lesions were assigned to either a novel context condition 

(PRH Novel, n = 18; nine from JAR166, nine from JAR169) or a home-cage control 

condition (PRH Baseline, n = 15; eight from JAR166, seven from JAR169) to serve as a 

baseline comparison for subsequent Fos immunohistochemistry. Likewise, the surgical 

control or ‘sham’ animals were divided between a novel context condition (Sham novel, 

n = 11; four from JAR166, seven from JAR169) and a comparative baseline control 

condition (Sham baseline, n = 12; seven from JAR166, five from JAR169). 

Behavioural testing was carried out by Eman Amin. The rats from JAR166 were tested 

in the activity boxes eight months after surgery while rats from JAR169 were tested four 

months after surgery. Each rat was taken into the room and placed individually inside an 

activity test cage. The box was illuminated and the locomotor activity of the rat was 

recorded for 20 min. The number of total beam breaks that took place over the 20 

minutes was recorded. These data were then divided into two categories; ‘same beam’ (a 

single beam being repeatedly broken) as well as ‘beam crossovers’ (both the front and 

back beams broken sequentially). On completion of their exposure to the novel context, 

the rats were placed in a dark room for 90 minutes and then perfused as described in the 

General Methods section 2.4.  

5.2.5 Lesion analysis 

As described in General Methods section 2.6. 
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5.2.6 Immunohistochemistry 

Brain sections were stored at -20°C in cryoprotectant until all rats had completed their 

respective behavioural protocol. The sections were then immunohistochemically stained 

with one rat from each of the four behavioural groups in the same reaction vessel. The 

protocol was as described in General Methods section 2.7. 

5.2.7 Regions of interest 

The multiple regions of interest are illustrated in Figure 5.2. Two brain atlases (Paxinos 

& Watson, 2005; Swanson, 1992) helped to verify the locations of brain areas, unless 

otherwise specified. The anterior – posterior (AP) coordinates (mm from bregma) given 

in the descriptions below and in Figure 5.2 are from Paxinos & Watson (2005). The 

regions below reflect the groupings subsequently used in the statistical analyses of Fos 

counts. 

5.2.7.1 Hippocampal formation   

Hippocampal subfields (dentate gyrus, CA1, and CA3) were subdivided into their septal 

(dorsal), intermediate, and temporal (ventral) divisions (Bast, 2007; Strange et al., 2014). 

The septal hippocampus counts (dentate gyrus, CA3 and CA1) were obtained from 

sections from AP -2.52 to -3.24, while those for the intermediate hippocampus (dentate 

gyrus, CA1, CA3) came from sections from AP -4.80 to -5.52. The border between the 

intermediate and temporal hippocampus corresponds to -5.0 mm ventral from bregma 

(Paxinos & Watson, 2005). Within the temporal hippocampus, counts were made in 

CA1 and CA3 fields (at the same AP as the intermediate hippocampus). Additional cell 

counts were taken in both the dorsal and ventral subiculum (from around AP -5.16). 
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Figure 5.2. Regions of interest for c-fos analyses 

Sites included: CA fields - intermediate (inter), septal (sept) and temporal (temp); DG, dentate gyrus;  

dorsal Sub, dorsal subiculum;  LEC, lateral entorhinal cortex;  MEC, medial entorhinal cortex;  PL, 

prelimbic cortex;  PRH, perirhinal cortex; POR, postrhinal cortex;  Reuniens, nucleus reuniens of 

thalamus; ventral Sub, ventral subiculum. The numbers below refer to the approximate distance in 

mm from bregma. Adapted from the atlas of Paxinos & Watson (2005). 

5.2.7.2 Rhinal cortices   

Separate cell counts were taken from the lateral and medial entorhinal cortices (LEC and 

MEC respectively) from sections AP -7.08 to -8.04. Fos counts were also made in the 

postrhinal cortex (at the same AP level); the boundaries were based on Burwell & 

Amaral (1998b).  
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5.2.7.3 Frontal cortex and thalamus  

 Fos-positive cell counts were made within the prelimbic cortex (PL) from AP +3.72 to 

+2.76 and nucleus reuniens from AP -1.44 to -2.28.   

5.2.7.4 Perirhinal cortex  

In the sham surgical groups only, additional Fos-positive cell counts were made at 

caudal (from AP -4.80 to -5.52) levels of areas 35 and 36 in the perirhinal cortex (PRH; 

see Burwell, 2001). The caudal region was chosen based on previous demonstrations 

that this region is particularly involved in the processing of novel visual stimuli 

(Albasser et al., 2009, 2010b; Chapter 3, 4). 

5.2.8 Image capture and analysis of c-fos activation 

As described in General Methods section 2.8. 

5.2.9 Statistical analysis 

5.2.9.1 Behavioural data 

Behavioural data were only generated for the animals placed in the activity boxes (‘Peri 

Novel’ and ‘Sham Novel’) as the baseline control groups (‘Peri Baseline’ and ‘Sham 

Baseline’) remained in their home-cages. These were compared by an ANOVA with one 

between-subject factor (surgical condition) and one within-subject factor (‘same beam’ 

or ‘beam crossovers’). 

5.2.9.2 Fos data 

To analyse group differences (sham vs. lesion; baseline vs. novel context) in the 

numbers of c-fos activated cells in the regions of interest, a two between-subjects factor 

(surgical condition and Baseline/Novel context) and one within-subject factor (Region 

of Interest; ROI) ANOVA was calculated. This analysis was carried out separately for 

three regional groupings: i) divisions within the hippocampal formation, ii) medial and 

lateral entorhinal cortex as well as postrhinal cortex, and iii) prelimbic cortex and 

nucleus reuniens of the thalamus. The aim of this regional grouping procedure was to 

reduce the likelihood of Type 1 errors by reducing the number of comparisons. The Fos 

counts in the perirhinal cortex (sham groups only) were compared using a one between 

(Baseline/Novel context) by one within-subject factor (ROI) ANOVA. Where an 

interaction was found to be significant, the simple effects were examined.  

Examination of the distribution of the Fos data revealed that Fos counts from novel 

groups were normally distributed. However, counts obtained from both baseline control 
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groups (‘Peri Baseline’ and ‘Sham Baseline’) were non-normal. This was confirmed 

formally by the Shapiro-Wilk test. The Fos counts in all regions of interest in the 

baseline groups displayed moderately positively-skewed distributions and their means 

were proportional to their variance. Thus, the data were transformed using a square-root 

transformation (Howell, 2011) for those analyses that involved only these groups. The 

ANOVAs described above were calculated based on the raw Fos counts for all groups as 

a comparison between raw Fos counts for two groups and transformed data for the other 

two groups would be difficult to interpret. Also, an ANOVA is relatively robust to 

violations of the normality assumption when group sample sizes are equal (Howell, 

2011). The data are displayed as mean Fos counts ± standard error of the mean.   

Pearson product-moment correlation coefficients were calculated for the raw Fos-

positive cell counts in the various sites, as well as with the activity of animals in the 

Novel Context condition. In the baseline control groups, Pearson product-moment 

correlation coefficients were calculated based on the transformed data as these data were 

subsequently used for the structural equation modelling analyses. The levels of the 

correlations obtained between regions were also compared between the perirhinal and 

sham lesion groups using Fisher's r-to-z transformation (Zar, 2010).   

5.2.10 Structural equation modelling 

As described in General Methods section 2.10. 

5.3 Results 

5.3.1 Lesion analysis 

In most cases, the lesions encompassed the whole rostral-caudal extent of the perirhinal 

cortex with very small amounts of tissue sparing. The attempt to make complete 

perirhinal cortex lesions inevitably led to some extra-perirhinal damage. This was 

typically observed in the most ventral region of area Te2, and the most dorsal region of 

the piriform and lateral entorhinal cortices, the cortical areas adjacent to the perirhinal 

cortex (Figure 5.3). Subcortical damage was observed in some cases in the CA1 subfield 

of the hippocampus, but only at the temporal level (Figure 5.3). A hemisphere was 

removed from analysis if gliosis was seen in two or more consecutive sections of the 

temporal region of CA1. Due to the prevalence of this extra-perirhinal damage seven 

animals were excluded from group Peri Novel (six from JAR166, one from JAR169) 

and three animals were excluded from Peri Baseline (all from JAR166).  Following the 

exclusion of these animals, the group numbers were as follows: Peri Novel, n = 11; 
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Sham Novel, n = 11; Peri Baseline, n = 12; Sham Baseline, n = 12. Overall perirhinal 

damage ranged from 64.3% to 100%. The largest and smallest lesions were quantified 

separately for the animals from each cohort in the two behavioural conditions (Figure 

5.3; Table 5.2). 

Of these remaining animals, only one hemisphere was analysed per brain for Fos-

positive cells; six left hemispheres and five right hemispheres were analysed in group 

Peri Novel, while three left hemispheres and nine right hemispheres were analysed in 

group Peri Baseline. The corresponding hemispheres were analysed in the matched 

surgical controls.  

 

Figure 5.3. Perirhinal lesion reconstructions. 

Diagrammatic reconstructions of the perirhinal cortex lesions showing the individual cases with the 

largest (grey) and smallest (black) lesions for rats from cohort JAR166 and JAR169 in groups Peri 

Novel and Peri Baseline. The numbers refer to the distance (in millimetres) from bregma (adapted 

from Paxinos & Watson, 2005).  
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Table 5.2. Range of damage to perirhinal cortex each cohort in both behavioural 

conditions. 

 
Peri Novel Peri Baseline 

 
Smallest Largest Smallest Largest 

JAR166 64.3% 80.6% 81.0% 92.7% 

JAR169 76.7% 93.4% 71.3% 100.0% 

 

5.3.2 Behavioural testing 

Analysis on the two components of total beam breaks (‘same beam’ or ‘beam 

crossovers’) revealed that there was no overall effect of the presence of a perirhinal 

cortex lesion (F1,18 = 1.36, p = 0.26; Figure 5.4). This lack of effect was uniform as the 

interaction between lesion and type of beam break was also non-significant (F1,18 = 3.21, 

p = 0.09). 

 

Figure 5.4. Behavioural measures. 

Graphs illustrate the locomotor activity measures from the activity box for groups Peri Novel and 

Sham Novel. Data are presented as means ±SEM. 

5.3.3 Fos-positive cell counts   

5.3.3.1 Hippocampal subfields – comparison of Fos counts 

Three levels along the rostral-caudal axis of the hippocampus were examined (septal, 

intermediate and temporal; division based on Bast et al., 2009). At the septal and 

intermediate levels, three subfields were assessed [CA1, CA3 and dentate gyrus (DG)] 

and at the temporal level of the hippocampus two subfields were assessed (CA1 and 
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CA3) as DG is not present at this level. Additionally, counts were made in dorsal and 

ventral subiculum.  

While perirhinal cortex lesions had no apparent effect on the number of Fos-positive 

neurons in the hippocampal formation, being placed in a novel context dramatically 

increased hippocampal Fos expression (Figure 5.5, 5.6). A significant Mauchly’s test (p 

≤ 0.001) indicated that the assumption of sphericity of the within-subject variable (ROI) 

was violated and so corrected degrees of freedom are presented below (as described in 

General Methods section 2.9). Formally comparing Fos-positive cell counts across the 

ten hippocampal subfields found no overall effect of perirhinal lesions (F1,42 = 1.43, p = 

0.24). The Fos counts in the animals placed in a novel context were consistently higher 

than the Fos counts of animals that were exposed to their highly familiar home-cage 

context (F1,42 = 166, p ≤ 0.001). Additionally, there was an overall effect of subfield 

(F2.8,116 = 101, p ≤ 0.001); reflecting the differing levels of Fos expression in each of the 

subfields (Figure 5.5, 5.6). There was, however, no lesion by context interaction (F < 1) 

nor was the lesion by subfield interaction significant (F2.8,116 = 1.12, p = 0.34). There was 

a significant context by subfield interaction (F2.8,116 = 48.2, p ≤ 0.001); simple effects 

revealed that all ten subfields had higher Fos-positive cell counts when exposed to a 

novel context than when compared to baseline, but the magnitude of this difference 

differed among the subfields (All F1, 42 > 27, p ≤ 0.001; Figure 5.5, 5.6). Finally, the 

three-way interaction was not significant (F < 1). 

 

Figure 5.5. Mean Fos-positive cell counts per group in the hippocampal formation. 

Sites analysed: CA fields – intermediate (inter), septal (sept) and temporal (temp); dentate gyrus 

(DG); subiculum (Sub). Exposure to a novel context reliable increased Fos-related activity in all 

regions analysed (p < 0.001). Data are presented as means ±SEM. 
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Figure 5.6. Hippocampal Fos expression. 

Representative photomicrographs from coronal section depict Fos-positive cells in intermediate and 

temporal levels of the hippocampus in groups (A) Sham Novel, (B) Peri Novel, (C) Sham Baseline 

and (D) Peri Baseline. Scale bar: 200 µm. 

5.3.3.2 Medial and lateral entorhinal cortex and postrhinal cortex – comparison 

of Fos counts  

As in the hippocampus, the assumption of sphericity was also violated in the rhinal 

cortex and so corrected degrees of freedom are presented. In the three regions of the 

rhinal cortex analysed here, Fos-positive cell counts in rats with lesions to the perirhinal 
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cortex were consistently lower than their surgical controls (Figure 5.7). This was 

reflected by a significant effect of lesion (F1,40 = 5.41, p = 0.025). As observed in the 

hippocampal formation, novel context exploration produced higher Fos counts in MEC, 

LEC and postrhinal cortex than exposure to the highly familiar home-cage (F1,40 = 113, p 

≤ 0.001; Figure 5.7). There was also an overall effect of region (F1.2,49 = 224, p ≤ 0.001) 

as each of these regions had differing Fos-positive cell counts. The region by lesion 

interaction was significant, indicating that the various regions of the rhinal cortex were 

differentially affected by the presence of a perirhinal cortex lesion (F1.2,49 = 6.00, p = 

0.013); simple effects analysis revealed that this difference was driven by higher Fos 

counts in the LEC of sham animals when compared to animals with perirhinal lesions 

(F1,40 = 6.56, p = 0.014; Figure 5.7). This lesion effect did not extend to the MEC or 

postrhinal cortex (F1,40 = 3.44, p = 0.071; F1,40 = 1.59, p = 0.21 respectively). 

Additionally, the context differentially affected the three regions of the rhinal cortex 

(F1.2,49 = 114, p ≤ 0.001); simple effects revealed that MEC, LEC and postrhinal cortex 

all had higher Fos-positive cell counts when exposed to a novel context compared to 

baseline but the magnitude of this difference differed among these regions (MEC: F1,40 = 

65.9, p ≤ 0.001; LEC: F1,40 = 131, p ≤ 0.001; POR: F1,40 = 46.8, p ≤ 0.001; Figure 5.7). 

Finally, the three-way interaction was non-significant (F2,80 = 1.61, p = 0.21). 

 

Figure 5.7. Mean Fos-positive cell counts per group in the rhinal cortices. 

Sites analysed: lateral entorhinal cortex (LEC); medial entorhinal cortex (MEC); postrhinal cortex 

(POR). Exposure to a novel context reliable increased Fos-related activity in all regions analysed (p < 

0.001). Data are presented as means ±SEM. 
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5.3.3.3 Prelimbic cortex and nucleus reuniens of the thalamus – comparison of 

Fos counts 

Lesions to the perirhinal cortex did not affect Fos-related activity in the prelimbic cortex 

or nucleus reuniens of the thalamus but, as with all other regions described, exposure to 

a novel context increased the numbers of Fos-positive cells (Figure 5.8). 

In these regions, the overall effect of lesions in the perirhinal cortex was not significant 

(F1,42 = 2.01, p = 0.16). The effect of exploring a novel context compared to a familiar 

home-cage caused a significant increase in the number of Fos-positive cells in both 

prelimbic cortex and nucleus reuniens (F1,42 = 64.3, p ≤ 0.001; Figure 5.8). There was 

also an overall effect of region (F1,42 = 78.1, p ≤ 0.001) as Fos counts were different 

between these two regions. There was no lesion by context interaction (F1,42 = 2.15, p = 

0.15), nor was the region by lesion interaction significant (F < 1). Consistent with all of 

the other regional groupings, the context by region interaction was significant (F1,42 = 

21.7, p ≤ 0.001); higher Fos-positive cell counts were observed when rats were exposed 

to a novel context but the extent of the difference differed between these regions (PL: 

F1,42 = 47.5, p ≤ 0.001; Reuniens: F1,42 = 52.1, p ≤ 0.001; Figure 5.8). Finally, the three-

way interaction was not significant (F < 1). 

 

Figure 5.8. . Mean Fos-positive cell counts per group in the prelimbic cortex and 

nucleus reuniens. 

Sites analysed: prelimbic cortex (PL); nucleus reuniens of the thalamus (Reuniens). Exposure to a 

novel context reliably increased Fos-related activity in all regions analysed (p < 0.001). Data are 

presented as means ±SEM. 

5.3.3.4 Perirhinal cortex – comparison of Fos counts in shams groups 

The pattern observed in all other regions was repeated in the perirhinal cortex. In Areas 

35 and 36 of the surgical control groups (groups Sham Novel and Sham Baseline) there 

was a significant condition difference; higher Fos counts were associated with the novel 
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context (F1,21 = 41.7, p ≤ 0.001; Figure 5.9). Overall, the Fos counts in Area 35 were no 

different to those in Area 36 (F < 1). The context did however affect the two areas 

differently (F1,21 = 9.84, p = 0.005); simple effects analysis revealed that context novelty 

significantly influenced both regions, but increased Fos counts in Area 35 to a greater 

extent (Area 35: F1,21 = 44.2, p ≤ 0.001; Area 36: F1,21 = 25.5, p ≤ 0.001;  Figure 5.9).   

 

Figure 5.9. Mean Fos-positive cell counts in the perirhinal cortex in the Sham 

groups. 

Sites analysed: Areas 35 and 36 of the perirhinal cortex. Exposure to a novel context reliable 

increased Fos-related activity in all regions analysed (p < 0.001). Data are presented as means ±SEM. 

5.3.4 Correlation tables 

Two sets of Pearson product moment correlation coefficients were calculated for groups 

Sham Novel and Peri Novel. The first set was between the behavioural measures from 

the activity box and the number of Fos-positive neurons in the various regions of interest 

(Table 5.3; first two rows/columns). In both of these animal groups only one region 

reached significance; intermediate CA3 in group Sham Novel, and temporal CA3 in 

group Peri Novel. Fos counts in both of these regions correlated with the number times a 

single beam was repeatedly broken (same beam breaks). Due to the large numbers of 

correlations calculated, combined with the fact that these correlations only just reached 

the level of significance, it seems unlikely that these isolated correlations are 

meaningful. Thus, this indicates that activity in the analysed brain regions was not 

merely driven by motor activity of the animals in either group. 

The second set of Pearson product moment correlation coefficients calculated for the 

two groups exposed to the novel context were inter-regional correlations of the raw Fos 

counts (remainder of Table 5.3). This was to give an indication of how the activity of the 
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different brain regions co-varied. These inter-regional correlations were also calculated 

for the baseline groups (Table 5.4), however these correlations are based on square-root 

transformations of the Fos counts rather than the raw Fos counts as the raw counts in 

these groups were not normally distributed (Howell, 2011).   

These tables of correlations present probability levels that are not corrected for multiple 

comparisons as the individual correlations are of limited significance. More importantly, 

these correlations provide the source data for the structural equation modelling, in which 

the fit of the overall model helps to compensate for Type 1 errors in the individual 

correlations that comprise the model. Because of this, it is important that any model 

must conform to known patterns of anatomical connectivity between the regions of 

interest; this constrains the number of potential models. It is still of note that in both of 

the groups in the novel condition, approximately one-quarter of the possible correlations 

reached significance level. Whereas for both of the baseline groups approximately three-

quarters of the possible correlations reached significance level.
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Table 5.3. Behavioural and inter-region correlations of Fos-positive cell counts in the two Novel groups.  

 

The top right diagonal matrix (darker grey) displays correlation data from the Sham Novel object group while the bottom left diagonal matrix displays correlation data from the Peri Novel group (lighter grey). The r-values are Pearson 

correlation coefficients. * p < 0.05, ** p < 0.01, *** p < 0.001, for two-tailed correlations (uncorrected for multiple comparisons – see main text). Sites included: area 35 and area 36 of the perirhinal cortex (PRH); CA fields - intermediate 

(inter), septal and temporal (temp); dentate gyrus (DG); lateral entorhinal cortex (LEC); medial entorhinal cortex (MEC); nucleus reuniens of the thalamus (Reuniens); prelimbic cortex (PL); postrhinal cortex (POR); subiculum (Sub).  

Beam 

Cross 

overs

Same 

Beam

Septal 

CA1

Septal 

CA3

Septal 

DG

Inter 

CA1

Inter 

CA3 Inter DG

Temp 

CA1

Temp 

CA3

Dorsal 

Sub

Ventral 

Sub PL MEC LEC POR Reuniens

Caudal 

area 35

Caudal 

area 36

Caudal 

PRH

r-value 0.311 0.586 0.017 0.226 0.267 0.371 -0.085 0.335 0.513 -0.027 0.399 0.033 0.008 -0.355 0.333 0.317 0.403 0.077 0.296 r-value

p-value 0.382 0.075 0.962 0.530 0.456 0.291 0.816 0.345 0.129 0.942 0.253 0.927 0.983 0.314 0.347 0.372 0.248 0.833 0.407 p-value

r-value 0.530 0.033 0.161 0.028 0.538 .754* 0.347 0.398 0.165 0.174 0.096 0.606 0.184 -0.069 -0.099 0.271 -0.357 -0.314 -0.369 r-value

p-value 0.093 0.927 0.657 0.938 0.108 0.012 0.326 0.255 0.649 0.631 0.792 0.063 0.611 0.850 0.786 0.450 0.312 0.377 0.294 p-value

r-value 0.010 0.139 0.427 0.181 .656* 0.456 0.220 .623* 0.450 0.197 .712* 0.434 .717* 0.572 .728* 0.328 .709* 0.527 .663* r-value

p-value 0.977 0.683 0.190 0.593 0.028 0.158 0.515 0.041 0.165 0.562 0.014 0.183 0.013 0.066 0.011 0.325 0.014 0.096 0.026 p-value

r-value -0.354 0.075 .850** 0.184 .708* 0.457 0.306 .716* -0.098 0.025 0.481 0.441 0.472 0.565 0.571 0.328 0.410 0.276 0.398 r-value

p-value 0.285 0.828 0.001 0.588 0.015 0.157 0.360 0.013 0.774 0.942 0.134 0.175 0.143 0.070 0.067 0.325 0.211 0.411 0.225 p-value

r-value 0.235 0.477 0.418 0.251 0.215 -0.051 .626* -0.085 0.491 .706* 0.027 -0.429 -0.091 0.070 0.326 .664* 0.145 0.522 0.375 r-value

p-value 0.487 0.138 0.201 0.457 0.525 0.882 0.040 0.803 0.125 0.015 0.937 0.188 0.790 0.839 0.327 0.026 0.671 0.100 0.256 p-value

r-value 0.116 0.422 .832** .816** 0.276 0.457 0.473 .909*** 0.333 0.424 .618* .626* .749** .742** 0.571 0.509 0.522 0.601 .616* r-value

p-value 0.735 0.196 0.001 0.002 0.411 0.158 0.142 <0.001 0.317 0.194 0.043 0.039 0.008 0.009 0.067 0.109 0.099 0.050 0.044 p-value

r-value -0.005 0.474 0.053 0.170 0.232 0.012 0.225 0.452 0.067 -0.112 0.398 .699* 0.436 0.274 0.362 0.138 -0.003 -0.176 -0.102 r-value

p-value 0.988 0.140 0.877 0.618 0.492 0.972 0.506 0.162 0.846 0.743 0.226 0.017 0.180 0.414 0.274 0.686 0.993 0.605 0.766 p-value

r-value 0.459 0.400 .627* 0.462 0.471 .622* 0.321 0.188 0.291 .800** 0.222 0.194 0.367 0.319 0.052 0.322 0.116 0.589 0.383 r-value

p-value 0.155 0.223 0.039 0.152 0.144 0.041 0.336 0.580 0.385 0.003 0.511 0.567 0.267 0.340 0.878 0.334 0.734 0.056 0.246 p-value

r-value -0.074 0.015 .810** .873*** 0.109 .855** -0.142 0.588 0.263 0.054 .768** .712* .717* .668* 0.443 0.325 .632* 0.466 .606* r-value

p-value 0.828 0.965 0.003 <0.001 0.750 0.001 0.676 0.057 0.435 0.875 0.006 0.014 0.013 0.025 0.173 0.329 0.037 0.148 0.048 p-value

r-value 0.392 .629* 0.171 0.123 0.415 0.136 .814** 0.500 -0.016 0.442 0.578 0.054 0.283 0.230 0.092 .710* 0.565 0.507 0.579 r-value

p-value 0.233 0.038 0.616 0.718 0.204 0.689 0.002 0.118 0.962 0.173 0.063 0.874 0.400 0.496 0.787 0.014 0.070 0.111 0.062 p-value

r-value 0.150 0.126 .793** .626* 0.447 .748** -0.160 .705* .705* -0.004 -0.024 -0.079 0.285 0.315 0.162 0.526 0.108 .647* 0.406 r-value

p-value 0.659 0.713 0.004 0.040 0.168 0.008 0.638 0.015 0.015 0.990 0.944 0.817 0.396 0.345 0.635 0.096 0.751 0.031 0.215 p-value

r-value -0.147 -0.189 -0.311 -0.195 0.306 -0.420 0.213 0.277 -0.231 0.149 0.000 0.575 .656* 0.520 0.246 0.311 .835** 0.508 .731* r-value

p-value 0.667 0.578 0.351 0.565 0.359 0.199 0.529 0.410 0.494 0.662 1.000 0.064 0.028 0.101 0.467 0.351 0.001 0.111 0.011 p-value

r-value 0.357 0.429 0.409 0.337 .604* 0.484 0.302 .824** 0.339 0.407 .722* 0.406 .718* 0.505 0.120 0.038 0.219 -0.012 0.103 r-value

p-value 0.281 0.187 0.211 0.311 0.049 0.132 0.366 0.002 0.308 0.215 0.012 0.215 0.013 0.113 0.725 0.911 0.518 0.971 0.762 p-value

r-value -0.014 0.012 -0.070 -0.075 0.216 -0.316 .624* 0.363 -0.220 .629* 0.008 .667* 0.335 .888*** 0.435 0.231 .618* 0.497 0.588 r-value

p-value 0.968 0.973 0.839 0.826 0.523 0.343 0.040 0.273 0.515 0.038 0.982 0.025 0.314 <0.001 0.181 0.495 0.043 0.120 0.057 p-value

r-value 0.433 0.224 0.136 0.022 0.082 0.095 0.422 0.515 0.068 .634* 0.339 0.245 0.574 .695* 0.565 0.389 0.555 0.533 0.572 r-value

p-value 0.183 0.507 0.690 0.948 0.812 0.780 0.197 0.105 0.842 0.036 0.308 0.468 0.065 0.018 0.070 0.237 0.076 0.091 0.066 p-value

r-value -0.160 0.104 0.522 0.464 0.576 0.304 0.439 .752** 0.292 0.333 0.528 0.513 .614* 0.526 0.220 0.421 0.352 0.314 0.359 r-value

p-value 0.639 0.761 0.100 0.151 0.064 0.363 0.177 0.008 0.384 0.317 0.095 0.107 0.045 0.097 0.515 0.197 0.289 0.346 0.279 p-value

r-value -0.326 0.217 0.550 .693* 0.193 0.477 0.520 0.533 0.503 0.405 0.459 0.113 0.359 0.494 0.388 0.595 0.356 0.340 0.391 r-value

p-value 0.327 0.521 0.080 0.018 0.570 0.138 0.101 0.092 0.115 0.216 0.155 0.740 0.278 0.122 0.238 0.054 0.283 0.306 0.234 p-value

r-value .679* .920*** r-value

p-value 0.022 <0.001 p-value

r-value .909*** r-value

p-value <0.001 p-value

r-value r-value

p-value p-value

Sham Novel Sham Novel

Beam 

Crossovers

Beam 

Crossovers

Same Beam Same Beam

Septal CA1 Septal CA1

Septal CA3 Septal CA3

Septal DG Septal DG

Inter CA1 Inter CA1

Inter CA3 Inter CA3

Inter DG Inter DG

Temporal 

CA1

Temporal 

CA1

Temporal 

CA3

Temporal 

CA3

Dorsal Sub Dorsal Sub

Ventral Sub Ventral Sub

PL PL

MEC MEC

LEC LEC

POR POR

Caudal 

PRH

Caudal PRH

Reuniens Reuniens

Caudal area 

35

Caudal area 

35

Peri Novel Peri Novel

Caudal area 

36

Caudal area 

36

Correlations absent due to 

perirhinal lesion surgeries 
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Table 5.4. Inter-region correlations of Fos-positive cell counts in the two Baseline groups. 

 

The top right diagonal matrix displays correlation data from the Sham Baseline group while to bottom left diagonal matrix displays correlation data from the Peri Baseline group. The r-values are the Pearson correlation coefficients. * p < 

0.05, ** p < 0.01, *** p < 0.001, for two-tailed correlations (uncorrected for multiple comparisons – see main text). Sites included: Sites included: area 35 and area 36 (a36) of the perirhinal cortex (PRH); CA fields - intermediate (inter), 

septal and temporal (temp); dentate gyrus (DG); lateral entorhinal cortex (LEC); medial entorhinal cortex (MEC); nucleus reuniens of the thalamus (Reuniens); prelimbic cortex (PL); postrhinal cortex (POR); subiculum (Sub). 

Septal 

CA1

Septal 

CA3

Septal 

DG

Inter 

CA1

Inter 

CA3 Inter DG

Temp 

CA1

Temp 

CA3

Dorsal 

Sub

Ventral 

Sub PL MEC LEC POR Reuniens

Caudal 

area 35

Caudal 

area 36

Caudal 

PRH

r-value .721** .780** .949*** 0.344 .772** .853*** .595* .626* .859*** .883*** .952*** .906*** .789** .909*** .793** .715** .767** r-value

p-value 0.008 0.003 <0.001 0.274 0.003 <0.001 0.041 0.029 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.002 0.009 0.004 p-value

r-value .597* .625* .711** 0.553 .747** .726** 0.170 0.377 .711** .619* .689* .725* 0.573 .701* .702* 0.574 .643* r-value

p-value 0.040 0.030 0.010 0.062 0.005 0.007 0.596 0.226 0.009 0.032 0.019 0.012 0.051 0.011 0.011 0.051 0.024 p-value

r-value .712** 0.056 .583* -0.002 .709** 0.547 0.309 0.471 .645* .632* .712* .634* 0.373 .679* 0.412 0.367 0.391 r-value

p-value 0.009 0.863 0.046 0.996 0.010 0.066 0.328 0.122 0.024 0.028 0.014 0.036 0.232 0.015 0.183 0.240 0.209 p-value

r-value .903*** .676* 0.525 0.489 .754** .893*** .634* .590* .897*** .876*** .968*** .954*** .901*** .934*** .903*** .798** .867*** r-value

p-value <0.001 0.016 0.079 0.107 0.005 <0.001 0.027 0.044 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 p-value

r-value .772** 0.566 0.543 .812** 0.425 0.543 0.361 0.534 0.512 0.300 0.396 0.474 .676* 0.402 .593* 0.390 0.493 r-value

p-value 0.003 0.055 0.068 0.001 0.169 0.068 0.248 0.074 0.089 0.344 0.227 0.141 0.016 0.196 0.042 0.210 0.103 p-value

r-value .807** 0.301 .851*** .774** .781** .892*** 0.543 0.548 .880*** .886*** .808** .788** .748** .769** .814** .766** .809** r-value

p-value 0.002 0.342 <0.001 0.003 0.003 <0.001 0.068 0.065 <0.001 <0.001 0.003 0.004 0.005 0.003 0.001 0.004 0.001 p-value

r-value .761** .641* 0.328 .935*** .810** .651* .595* .677* .901*** .940*** .951*** .943*** .896*** .821*** .906*** .866*** .912*** r-value

p-value 0.004 0.025 0.297 <0.001 0.001 0.022 0.041 0.016 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 p-value

r-value .770** 0.216 .664* .795** .804** .873*** .748** 0.574 0.561 .677* 0.597 0.558 .737** .640* .595* .716** .696* r-value

p-value 0.003 0.499 0.019 0.002 0.002 <0.001 0.005 0.051 0.058 0.016 0.053 0.074 0.006 0.025 0.041 0.009 0.012 p-value

r-value 0.557 0.452 0.530 0.543 .662* .604* 0.543 0.490 .580* 0.569 0.597 0.530 .707* .590* 0.494 0.415 0.463 r-value

p-value 0.060 0.141 0.077 0.068 0.019 0.037 0.068 0.106 0.048 0.054 0.052 0.094 0.010 0.044 0.103 0.180 0.129 p-value

r-value .892*** 0.574 0.496 .836** .693* .711** .757** .722** 0.408 .868*** .920*** .919*** .838** .900*** .893*** .731** .819** r-value

p-value <0.001 0.051 0.101 0.001 0.013 0.010 0.004 0.008 0.188 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.007 0.001 p-value

r-value .724** 0.534 0.298 .873*** .586* .631* .808** .752** 0.410 .737** .937*** .897*** .806** .834** .859*** .868*** .891*** r-value

p-value 0.008 0.074 0.346 <0.001 0.045 0.028 0.001 0.005 0.186 0.006 <0.001 <0.001 0.002 0.001 <0.001 <0.001 <0.001 p-value

r-value .865** 0.542 .664* .843** .940*** .829** .790** .796** .751** .791** .623* .985*** .878*** .883*** .886*** .812** .869** r-value

p-value 0.001 0.085 0.026 0.001 <0.001 0.002 0.004 0.003 0.008 0.004 0.041 <0.001 <0.001 <0.001 <0.001 0.002 0.001 p-value

r-value .855** .680* 0.489 .938*** .896*** .758** .959*** .757** .683* .759** .754** .872*** .878*** .859** .895*** .829** .884*** r-value

p-value 0.001 0.021 0.127 <0.001 <0.001 0.007 <0.001 0.007 0.021 0.007 0.007 <0.001 <0.001 0.001 <0.001 0.002 <0.001 p-value

r-value .832** 0.479 0.530 .876*** .791** .772** .854** .917*** 0.566 .748** .843** .775** .843** .799** .873*** .808** .866*** r-value

p-value 0.001 0.136 0.094 <0.001 0.004 0.005 0.001 <0.001 0.070 0.008 0.001 0.005 0.001 0.002 <0.001 0.001 <0.001 p-value

r-value .643* 0.494 0.212 .704* 0.390 0.455 .633* .632* 0.150 .628* .833** 0.359 0.571 .817** .868*** .746** .819** r-value

p-value 0.024 0.103 0.509 0.011 0.210 0.137 0.027 0.028 0.642 0.029 0.001 0.278 0.066 0.002 <0.001 0.005 0.001 p-value

r-value .849*** .941*** r-value

p-value <0.001 <0.001 p-value

r-value .978*** r-value

p-value <0.001 p-value
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5.3.5 Structural equation modelling 

5.3.5.1 Comparison of early learning network models 

The structural equation modelling analyses presented here provide estimates of how well 

the observed activity data map on to known anatomical pathways. The path coefficients 

within the models provide quantitative estimates of neural coupling between different 

brain regions associated with exploration of a novel environment. The first networks to 

be tested were those derived in previous studies that addressed learning about different 

types of novel stimuli; one network from a study of object recognition memory (Chapter 

3) and the other from a study of early spatial cue learning (Poirier et al., 2008). The idea 

was to test if the same anatomical pathways are engaged when rats learn about novel 

stimuli.  

The intention was to estimate regional activity in the same brain regions in both the 

lesion and sham groups. Because of this, cortical area Te2 was not analysed in the 

current experiment as damage was often observed in this region in the perirhinal lesion 

rats. For the same reason, a more caudal region of the LEC was analysed here than that 

reported in the previous experiments (Chapter 3 & 4). Consequently, the precise optimal 

network model for novel object recognition memory, derived in Chapter 3 (Figure 

3.12E), could not be tested. However, the common portion of the network could be 

tested; a simple linear model from the perirhinal cortex to LEC, then to septal CA3 and 

subsequently on to septal CA1 was tested for the Fos-related activity data generated by 

the group, Sham Novel (Figure 5.10A). The activity data did not fit this model (χ2
4 = 

5.06, p = 0.17; CFI = 0.77; RMSEA = 0.26; Figure 5.10A). A subset of this model was 

tested for the data from group Peri Novel, without the inclusion of the perirhinal cortex, 

and this was found to have acceptable fit (χ2
1 = 0.51, p = 0.48; CFI = 1.0; RMSEA = 

0.0).  Examination of this model for Peri Novel (Figure 5.10B) reveals that it seems to 

be driven by a highly significant effective connection between septal CA3 and CA1; 

LEC has little effect on CA3. Thus, it was concluded that learning about novel objects or 

novel environments does not activate the same patterns of regional activity in the rodent 

medial temporal lobe.   

Poirier et al., (2008) derived an optimal network model for early spatial cue learning 

(using Zif268 expression); this network is illustrated in Figure 5.10C, D. Again, the 

entire network could not be precisely reproduced as the previous network involved 

retrosplenial cortex which was not analysed in the current study. Nonetheless, the 

principal part of the model could be tested and, interestingly, the activity data from 
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group Sham Novel was found to have acceptable fit (χ2
1 = 1.18, p = 0.28; CFI = 0.97; 

RMSEA = 0.13; Figure 5.10C) while the Fos-related activity data generated by group 

Peri Novel did not (χ2
1 = 1.91, p = 0.17; CFI = 0.91; RMSEA = 0.30; Figure 5.10D). 

This suggests two preliminary findings. First, that the anatomical network associated 

with learning about a novel environment can be generalised across environments, even 

when they have very different features. Second, that perirhinal lesions seem to affect this 

network.  

 

Figure 5.10. Tests of network models derived in previous studies of novelty 

learning. 

(A) Data from Sham Novel tested on a network model previously derived for novel object 

recognition. (B) Data from Peri Novel tested on a network model previously derived for novel object 

recognition. (C) Data from Sham Novel tested on a network model previously derived for early spatial 

cue learning. (D) Data from Peri Novel tested on a network model previously derived for early spatial 

cue learning. Model fit is noted at the bottom of each model (CFI, comparative fit index; RMSEA, 

root mean square error of approximation). The strength of the causal influence of each path is denoted 

both by the thickness of the arrow and by the path coefficient next to that path. The number above 

each region is the proportion of its variance that can be explained by its inputs. Sites depicted: lateral 

entorhinal cortex (LEC), medial entorhinal cortex (MEC) and septal (sept) hippocampal subfields 

CA1, CA3 and dentate gyrus (DG). * p < 0.05; ** p <0.01; *** p < 0.001. 

5.3.5.2 Preliminary analyses 

Given that the network model of early spatial learning for group Sham Novel described 

above has only one degree of freedom (Figure 5.10C) this model has limited explanatory 

power. However this model does give an indication of the integrated patterns of 

hippocampal activity when rats explore a novel environment and so these relationships 

were further explored with more extensive network models. In addition, network models 

that fit the patterns of activity for all behavioural groups were sought and so the next aim 
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was to create a reference model, as described in Poirier et al (2008). This is a basic 

network model that activity data from all behavioural groups will fit that can 

subsequently be modified to create optimal models for each group. The reference 

network was determined by first collapsing Fos-positive cell counts for hippocampal 

subfields CA1, CA3 and DG across the rostral-caudal extent of the hippocampus in 

order to limit the possible number of models.  

The reference network model (structure depicted in Figure 5.11) was initially tested on 

data pooled from all animals (n = 46).  The optimal network model derived for these 

data involved parallel connections between MEC and LEC and from MEC to DG, CA3, 

CA1. The intrinsic hippocampal connections between DG and CA3 and from CA3 to 

CA1 were also present in this functional model. Additionally, LEC was connected to DG 

and CA1. The Fos-related activity data fit this network model well (χ2
2 = 2.56, p = 0.28; 

CFI = 0.99; RMSEA = 0.079) and the path coefficients for all pathways in the model 

were significant except that from MEC to DG.   

This reference network was then tested for Fos data from each of the groups individually 

(Figure 5.11). This network model had good fit for three of the four groups; the 

exception being group Peri Baseline (Figure 5.11D); the RMSEA was quite high 

suggesting that a simpler model is required for this group. Examination of the path 

strengths of the network models for each of the groups suggests differences between the 

groups. This was tested directly by stacking the data from the four groups on the 

reference model. The strength of each of the paths was constrained such that they had to 

have the same value in all of the groups, i.e., setting the models for the groups to be 

identical. This procedure produced a model of poorer fit than the model in which the 

path strengths of all paths were free to vary between the groups (χ2
24 Diff = 59.9, p < 

0.001). Even when the three groups for which the model had good fit were stacked in the 

same manner (excluding Peri Baseline), there was a significant difference between them 

(χ2
16 Diff = 37.2, p = 0.002). This indicates that the difference observed in the four-group 

comparison was not simply driven by an ill-fitting model for group Peri Baseline. All of 

this suggests that while the overall qualitative structure may be the same for three of the 

groups (as the network model has good fit), the effective functional connectivity 

between regions that compose the network are different between the groups.  
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Figure 5.11. Reference model for parahippocampal – hippocampal interactions. 

These models were derived from structural equation modelling based on Fos data collapsed over the 

rostral-caudal extent of the hippocampus. Reference model for groups Sham Novel (A), Peri Novel 

(B), Sham Baseline (C) and Peri Baseline (D). Model fit is noted at the bottom of each model (CFI, 

comparative fit index; RMSEA, root mean square error of approximation) and models with 

unacceptable fit are represented with a pale grey background. The strength of the causal influence of 

each path is denoted both by the thickness of the arrow and by the path coefficient next to that path. 

The number above each region is the proportion of its variance that can be explained by its inputs. 

Sites depicted: lateral entorhinal cortex (LEC), medial entorhinal cortex (MEC) and collapsed (c) 

hippocampal subfields CA1, CA3 and dentate gyrus (DG). * p < 0.05; ** p <0.01; *** p < 0.001. 

5.3.5.3 Optimal models for groups exposed to a novel context 

The reference model was subsequently used as a starting point to individually fit models 

of higher spatial resolution for the groups exposed to the novel context. In order to do 

this, the hippocampal Fos counts were divided back into septal, intermediate and 

temporal levels. This provided the potential for a very large number of network models 

and so in order to constrain this number only hippocampal subfields from the same 

septotemporal level were included in a model. Successive connections along the tri-

synaptic loop are known to extend someway along the septotemporal axis of the 

hippocampus; however, this is not complete (Amaral, 1993; Amaral & Lavanex, 2007). 

For instance, mossy fibres from the septal region of the dentate gyrus do not project to 
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the entire septotemporal length of CA3. It was decided to limit these connections to 

those from the same septotemporal level to avoid addition of implausible connections 

and to limit the number of possible models. As a consequence, models that involved, for 

example, only intermediate hippocampal subfields were tested. This reduced the 

possibility of type I errors. Fos-positive counts were not obtained for temporal dentate 

gyrus as it was not present at the level at which the temporal hippocampus was analysed. 

Thus, when the temporal CA fields were tested in a model, the collapsed counts from 

septal and intermediate dentate gyrus were used as a proxy for temporal dentate gyrus. 

An additional constraint was that models would only be accepted if they had more than 

two degrees of freedom due to the limited explanatory power of models with low 

degrees of freedom. Finally, a maximum of six nodes could be included in each model in 

order to ensure model fit statistics remained robust given the sample size (Bollen & 

Long, 1992; Wothke, 1993). 

Initially, the reference model was tested for each group individually for the three 

separate levels of the hippocampus. At each level, modifications were made to the 

reference model, such as adding additional regions or removing weak pathways. No 

well-fitting models for either group Sham Novel or group Peri Novel could be derived 

using hippocampal subfields from the septal level that conformed to the criteria listed 

above.   

The first well-fitting model to be derived for group Sham Novel was based on the 

intermediate hippocampal subfields (Figure 5.12A). The structure of the model was very 

similar to that of the reference model, excluding the path from LEC to intermediate 

dentate gyrus and an additional region was included, the postrhinal cortex, connected to 

MEC. The activity data fit this network model well (χ2
7 = 7.12, p = 0.42; CFI = 0.99; 

RMSEA = 0.041). Only six regions could be included in each model, thus if postrhinal 

cortex was removed from the model and subiculum was added, via a pathway from 

intermediate CA1 (Figure 5.12A), this also produced a model of good fit (χ2
7 = 5.68, p = 

0.58; CFI = 1.0; RMSEA = 0.0). Neither of these network models had acceptable levels 

of fit for any of the other groups (Figure 5.12B-D). In order to assess differences in the 

way novelty-related information was processed, the data from group Sham Novel and 

Sham Baseline were stacked on this network model in order to formally compare the 

path coefficients between the two behavioural conditions. Overall, the model in which 

the path coefficients were all free to vary had significantly better fit than the structural 

weights model in which all path coefficients were constrained to be the same for both 
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groups (χ2
8 Diff = 16.4, p = 0.036). When each of the paths were subsequently allowed to 

vary individually, only freeing the paths from MEC to LEC (χ2
1 Diff = 4.34, p = 0.04) and 

from MEC to dentate gyrus (χ2
1 Diff = 7.30, p = 0.008) significantly improved fit (all 

other paths: χ2
1 Diff < 2.3, p > 0.13).  

 

Figure 5.12. Model of good fit for of parahippocampal – intermediate hippocampal 

interactions for group Sham Novel. 

(A) Network model of good fit for activity data from group Sham Novel. (B) Illustrates the same 

network model for group Peri Novel but it has poor fit. (C) The same model for group Sham Baseline 

which also has poor fit. (D) The same poorly fitting model for group Peri Baseline. Model fit is noted 

at the bottom of each model (CFI, comparative fit index; RMSEA, root mean square error of 

approximation) and models with unacceptable fit are represented with a pale grey background. The 

strength of the causal influence of each path is denoted both by the thickness of the arrow and by the 

path coefficient next to that path. The number above each region is the proportion of its variance that 

can be explained by its inputs. Sites depicted: lateral entorhinal cortex (LEC), medial entorhinal 

cortex (MEC), postrhinal cortex (POR), intermediate (inter) hippocampal subfields CA1, CA3 and 

dentate gyrus (DG) and subiculum. Note that the dashed pathway involving Sub was added as this 

provided a further model with good fit; the additional fit indices in italics are related to this model. * p 

< 0.05; ** p <0.01; *** p < 0.001. 

Another well-fitting model involving the intermediate hippocampus could be derived for 

group Sham Novel (χ2
4 = 4.04, p = 0.40; CFI = 0.99; RMSEA = 0.03l; Figure 5.13A). 

The interactions between MEC and the hippocampal sub-regions remained the same as 



153 

 

the previously described model but the parahippocampal connections were simplified to 

one pathway between postrhinal cortex and MEC. Again, this network model did not 

have acceptable levels of fit for any of the other behavioural groups (Figure 5.13B-D). 

The groups Sham Novel and Sham Baseline were also stacked on this model. The only 

path that caused a significant improvement in model fit over the structural weights 

model when it was unconstrained was the pathway from MEC to dentate gyrus (χ2
1 Diff = 

7.31, p = 0.007). 

No network models connecting the subfields at the intermediate level of the 

hippocampus could be derived with acceptable fit for group Peri Novel. Consequently, 

although non-ideal, models involving collapsed septal and intermediate dentate gyrus 

along with temporal CA1 and CA3 were explored. Again, the models were initially 

based on the reference model and subsequently modified. The pathways connecting LEC 

to dentate gyrus and temporal CA1 were eliminated, as was the path from MEC to CA1 

(Figure 5.14B), producing a model of acceptable fit for group Peri Novel (χ2
5 = 5.22, p = 

0.39; CFI = 0.98; RMSEA = 0.07) but not for the other groups (Figure 5.14A, C, D).  

It should be noted that none of the network models derived for the groups exposed to a 

novel context had acceptable levels of fit in the equivalent baseline group. This suggests 

that the models are meaningful and not simply driven by spurious correlations associated 

with baseline Fos expression. 
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Figure 5.13. Alternative model of parahippocampal – intermediate hippocampal 

interactions for group Sham Novel. 

Simplified model of parahippocampal – intermediate hippocampal interactions for group Sham Novel. 

(A) Network model of high fit for group Sham Novel. (B) Illustrates the same network model for 

group Peri Novel but it has poor fit. (C) The same model for group Sham Baseline also has poor fit. 

(D) The same poorly fitting model for group Peri Baseline. Model fit is noted at the bottom of each 

model (CFI, comparative fit index; RMSEA, root mean square error of approximation). The strength 

of the causal influence of each path is denoted both by the thickness of the arrow and by the path 

coefficient next to that path. The number above each region is the proportion of its variance that can 

be explained by its inputs. Sites depicted: postrhinal cortex (POR), medial entorhinal cortex (MEC) 

and intermediate (inter) hippocampal subfields CA1, CA3 and dentate gyrus (DG). * p < 0.05; ** p 

<0.01; *** p < 0.001. 
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Figure 5.14. Optimal model of parahippocampal – temporal hippocampal 

interactions for group Peri Novel. 

(A) Network model for group Sham Novel with poor fit. (B) Illustrates the optimal network model for 

group Peri Novel. (C) The same model for group Sham Baseline also has poor fit. (D) The same 

poorly fitting model for group Peri Baseline. Model fit is noted at the bottom of each model (CFI, 

comparative fit index; RMSEA, root mean square error of approximation). The strength of the causal 

influence of each path is denoted both by the thickness of the arrow and by the path coefficient next to 

that path. The number above each region is the proportion of its variance that can be explained by its 

inputs. Sites depicted: lateral entorhinal cortex (LEC), medial entorhinal cortex (MEC), temporal 

(temp) hippocampal subfields CA1, CA3 and collapsed (c) dentate gyrus (DG). * p < 0.05; ** p 

<0.01; *** p < 0.001. 

5.3.5.4 Effect of perirhinal cortex lesions 

In order to assess the effect of lesions to the perirhinal cortex on incidental contextual 

learning, the data from the two novel groups were stacked on the three optimal models 

described above (two for Sham Novel and one for Peri Novel). Initially the two groups 

were stacked on the network model depicted in Figure 5.12; the unconstrained model 

was not significantly better than the model in which all path coefficients were 

constrained to be the same across the two groups (structural weights model; χ2
8 Diff = 

8.86, p = 0.36). This indicated that the groups did not differ; however, as the model had 

poor fit for group Peri Novel, further examination was required. To probe for 

differences, each of the pathways were individually unconstrained and compared to the 
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structural weights model. The only path that significantly improved fit when it was free 

to vary was that between MEC and intermediate CA1 (χ2
1 Diff = 7.11, p = 0.008). Of 

potential interest is the fact that allowing the paths from LEC to CA1 and from MEC to 

DG to differ between the groups came close to significantly improving fit over the 

structural weights model (χ2
1 Diff = 3.66, p = 0.055 for both paths; all other paths χ2

1 Diff < 

1.6, p > 0.23). 

The same procedure was carried out for the network model outlined in Figure 5.13 and 

exactly the same pattern of results emerged; the completely unconstrained model was 

not significantly different from the structural weights model (χ2
6 Diff = 8.25, p = 0.22) and 

when each of the pathways were examined individually only freeing the path between 

MEC and the intermediate CA1 significantly improved the model fit (χ2
1 Diff = 7.83, p = 

0.005; all other paths χ2
1 Diff < 1.5, p > 0.23). Furthermore, in group Sham Novel, the 

correlation between Fos counts in MEC and intermediate CA1 was strong and positive (r 

= 0.75, p = 0.008) whereas in group Peri Novel this correlation was negative and non-

significant (r = -0.32, p = 0.34). Formal comparison of these correlations using 

Fisher's r-to-z transformation revealed these correlations were significantly different (z = 

2.6, p = 0.009). 

Finally, the optimal model derived for group Peri Novel (Figure 5.14) was tested in the 

same way. Again, the model in which all path coefficients were free to have different 

values between the groups was not significantly different from the completely 

constrained, structural weights, model (χ2
5 Diff = 2.62, p = 0.22). Upon further 

investigation, individually unconstraining each of the pathways did not significantly 

improve on the structural weights model (for all paths χ2
1 Diff < 1.2, p > 0.27). This is not 

necessarily surprising as the path that caused the differences in the previous stacking 

procedures was not present in this model.  Additionally, the pattern of correlations seen 

between MEC and intermediate CA1 was repeated at the temporal level; the correlation 

between Fos counts in MEC and temporal CA1 was strong and positive (r = 0.72 p = 

0.013) whereas in group Peri Novel this correlation was negative and non-significant (r 

= -0.22, p = 0.52). Again, these correlations were significantly different (z = 2.25, p = 

0.024). 

Taken together, these results indicated that lesions to the perirhinal cortex caused 

alterations in the effective functional connection between the entorhinal cortex and CA1 

at intermediate and temporal levels when animals were exploring a novel context. 
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5.4 Discussion  

The first aim of the current study was to assess the impact of lesions to the perirhinal 

cortex on the hippocampus when rats explore a novel context. The second aim was to 

explore the possibility that based on Fos expression, there are common networks of 

activity in the medial temporal lobe associated with processing of multimodal novel 

stimuli. The third aim was to test if novel context exposure was associated with neuronal 

activity in the ‘where’ pathway postulated by the binding of item and context model 

(Diana et al., 2007). In order to address these aims, a group of rats with excitotoxic 

lesions in the perirhinal cortex and their surgical controls were exposed to a completely 

novel environment, an activity box in a novel room, in order to induce c-fos expression. 

Two other groups (perirhinal and sham lesions) were exposed only to their home-cages 

and so served as baseline controls for Fos expression.  The implications of the results of 

the experiment are first discussed followed by the discussion of some technical 

considerations and limitations. 

5.4.1 Theoretical implications  

5.4.1.1 The effect of perirhinal lesions 

Perirhinal lesions did not cause any differences in the amount of locomotion in a novel 

context. Following exposure to this novel context, Fos expression was examined and as 

expected this exposure significantly increased Fos-positive cell counts across the brain 

when compared to baseline controls (Zhu et al, 1997; VanElzakker et al., 2008). As 

outlined above, the initial goal of the study was to assess if perirhinal lesions altered the 

levels of this novelty related c-fos activity. There was no evidence of a lesion effect in 

any examined subfields of the hippocampus, the prelimbic cortex or the nucleus reuniens 

of the thalamus. A lesion effect was observed, however, in the entorhinal cortex, 

specifically the lateral entorhinal cortex. It is likely that this reduction in Fos-related 

activity is due to the loss of the dense input from perirhinal cortex to the lateral 

entorhinal cortex (Burwell & Amaral, 1998b). Thus, initial indications were that lesions 

to the perirhinal cortex did not affect overall hippocampal activity related to exposure to 

a novel context, but did affect activity in one of the main cortical input regions to the 

hippocampus (Van Strien et al., 2009). Although overall hippocampal Fos counts were 

ostensibly unaffected by the current perirhinal lesions, the relationships between the 

hippocampal subfields may have been altered (Poirier et al., 2008; Chapter 3, 4). In 

order to explore the concept of altered network dynamics, structural equation modelling 
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was undertaken on the Fos-related activity data to look for evidence of dysfunction in 

the intrinsic hippocampal networks.  

Exploring network dynamics using structural equation modelling allows for the 

comparison of specific pathway coefficients between lesion groups, thus the connections 

between regions downstream of the lesion site can be directly compared. If perirhinal 

cortex lesions directly cause spatial memory impairments, it could manifest as 

widespread disruption of all pathways. On the other hand, if the consequence of a 

perirhinal lesion is to remove a signal that would normally be present (as was indicated 

by the absolute reduction in Fos-related activity in the lateral entorhinal cortex) the 

network changes could be seen on a smaller scale. The network alterations could present 

themselves in the connections between regions of the rhinal cortex, in the connections 

between the rhinal cortex and the hippocampus, or in the intrinsic connections of the 

hippocampus.  

The reference model (Figure 5.11) had good fit for the activity data from both groups 

Sham Novel and Peri Novel. However, the fact that none of the more anatomically 

specific models generated good measures of fit for both group Sham Novel and group 

Peri Novel indicated that the perirhinal lesions do indeed alter contextual processing. In 

spite of this, examination of the path strengths of the intrinsic hippocampal connections 

shows that they were typically similar across both group Sham Novel and group Peri 

Novel, while there were often differences in the strength of the connections between the 

cortex and the hippocampus. Direct comparisons between the network models for 

groups Sham Novel and group Peri Novel revealed that the intrinsic connections 

between the rhinal cortices and the intrinsic hippocampal connections were unaffected. 

Instead, changes were identified in the pathway from medial entorhinal cortex to 

intermediate or temporal CA1. In the Sham Novel group, the path between these two 

regions was positive, whereas in the Peri Novel group it was negative. It has been 

suggested that path coefficients can be interpreted in the same way as correlation 

coefficients; a negative coefficient indicates that increased activity in one region results 

in a proportional activity decrease in the region to which it is connected (McIntosh & 

Gonzalez-Lima, 1991). The result of the dysfunction in the connection between medial 

entorhinal cortex and CA1 was reinforced by the need to remove this path in order to 

obtain a model of acceptable fit for group Peri Novel. This pathway defect was further 

compounded by the finding that the inter-regional correlation between the medial 

entorhinal cortex and CA1 was significantly different between the groups. Together this 
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indicates that perirhinal cortex lesions did not cause intrinsic hippocampal dysfunction, 

rather, that the disruption occurs in a processing step before the hippocampus. The 

results also point to the ability of the hippocampus to maintain intrinsic activity patterns, 

despite these parahippocampal changes. 

Many studies that have investigated the impact of perirhinal lesions failed to find deficits 

on spatial tasks that are sensitive to hippocampal function (reviewed in Aggleton et al., 

2004). This finding is consistent with the pattern of results presented here. There are, 

however, some studies that report subtle behavioural deficits in spatial tasks due to 

lesions of the perirhinal cortex (Wiig & Bilkey, 1994a,b; Liu & Bilkey, 1998a,b, 2001). 

The data described above indicate that these deficits are not due to perturbations in a 

single memory system based around the hippocampus. While it remains a possibility that 

these impairments could be due to integral involvement of the perirhinal cortex in spatial 

processing the results presented here indicate that deficits are due to secondary 

dysfunction caused by deafferentation of the surrounding cortical areas. The present 

lesion differences in overall activity levels in the lateral entorhinal cortex, and in the 

connection between medial entorhinal cortex and CA1 suggest that the spatial deficits 

observed following perirhinal cortex lesions are due to downstream effects of the 

perirhinal lesion on the entorhinal cortex and its subsequent interaction with the 

hippocampus. The possibility remains that this lesion effect is due to a loss of the direct 

connections between the perirhinal cortex and medial entorhinal cortex. Alternatively 

the lesion effect could be due to the loss of the more numerous indirect connections 

between the perirhinal cortex and medial entorhinal cortex via lateral entorhinal cortex 

and postrhinal cortex (Burwell & Amaral, 1998b; Burwell, 2000). The absolute 

reduction in Fos expression in the lateral entorhinal cortex would suggest the latter.  

An alternative explanation of the lesion effects observed previously in spatial learning 

and one that is compatible with the results presented here comes from the suggestion 

that the perirhinal cortex is involved in perception of contextual stimuli (Kent & Brown, 

2012). This suggestion was based around the perceptual-mnemonic feature conjugation 

model of perirhinal cortex function. In addition to its role in facilitating item-based 

memory, the perirhinal cortex has been implicated in perceptual processing (Murray & 

Bussey, 1999; Bussey et al., 2005, 2007; Murray & Wise, 2012). This model 

conceptually places the perirhinal cortex at the end of the ventral visual processing 

stream. Wherein, contiguous components (or features) of an item are represented as a 

whole, rather than the individual component parts that are represented in areas earlier in 
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the visual processing stream (Murray & Bussey, 1999; Murray et al., 2007). Kent and 

Brown (2012) suggest this role in perception may extend beyond item processing to the 

perception of contextual surroundings. Weight is added to this perspective by the 

findings that, although perirhinal lesions impair contextual fear conditioning and fear 

conditioning to complex auditory cues (Corodimas & LeDoux, 1995; Sachetti et al., 

1999; Bucci et al., 2000, 2002; Lindquist et al., 2004, Kholodar-Smith et al., 2008a,b), 

they are also known to leave fear conditioning to continuous tones unimpaired (Bucci et 

al., 2000; Lindquist et al., 2004; Kholodar-Smith et al., 2008b). Additionally, increased 

Fos expression in the perirhinal cortex has been associated with contextual fear 

conditioning but not cued fear conditioning (Albrechet-Souza et al., 2011). If the 

perirhinal cortex functions in affective learning by associating the conditioned and 

unconditioned stimuli, lesions could be expected to impair learning in this cued fear 

conditioning paradigm. Thus, the perirhinal cortex may be involved in perception of 

contexts, but this activity is not required to maintain intrinsic hippocampal interactions.  

5.4.1.2 Novelty processing network 

The second aim of the current study was to use structural equation modelling methods to 

assess if there are specific neural networks within the medial temporal lobe that are 

involved in general multimodal novelty processing. Initially, novelty related data from 

the current study was tested on the network models derived in a study of object 

recognition memory (Chapter 3), and another, derived in a test of novel spatial cue 

learning (Poirier et al., 2008).   

The optimal network model for novel object recognition memory derived in Chapter 3 

involved a path directly from Te2 to LEC and another path from Te2, via perirhinal 

cortex, to LEC, which in turn project to septal CA3 and from there to septal CA1. Area 

Te2 and perirhinal cortex were not analysed in the perirhinal lesion groups of the present 

study and so only the common portion of the network could be tested; a simple linear 

model from LEC to septal CA3 and, thence, to septal CA1. This model had acceptable 

fit for group Peri Novel; however, examination of the path strengths (Figure 5.10B) 

revealed that it seems to be driven by a highly significant effective connection between 

septal CA3 and CA1, but LEC appeared to have little effect on CA3. This, combined 

with the fact that the model has only one degree of freedom and thus, relatively low 

explanatory power led to the rejection of this as a viable model. Further, when the 

perirhinal cortex was added at the start of the model and tested on the activity data from 

group Sham Novel, it had poor fit (Figure 5.10A). 
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Poirier et al. (2008) derived an optimal network model for novel spatial cue learning. It 

involved parallel connections from MEC to septal levels of DG, CA3 and CA1. These 

regions were also interconnected and CA1 was further connected to the retrosplenial 

cortex. Again, the entire network could not be precisely reproduced as the retrosplenial 

cortex was not analysed in the current study. Nonetheless, the predominant part of the 

model could be tested and this network model fit the activity data from group Sham 

Novel, although the model only had one degree of freedom. The same network model 

had poor levels of fit for group Peri Novel but examination of these models (Figure 

5.10C, D) reveals the same pattern as that described above; the most striking difference 

between the surgical conditions is the path between MEC and CA1.  

Although these hypothesised models did not adhere to the criteria outline in Section 

5.3.5.3, the Poirier et al. (2008) network model (Figure 5.10C, D) showed potential for 

fitting the current novelty data and so new models of acceptable fit to the activity data 

were derived based around this general network structure. Initially a reference model 

was created based on collapsing the data for all four current animal groups, and 

collapsing Fos counts for CA1, CA3 and DG across the septotemporal axis of the 

hippocampus, in order to limit the possible number of models. The fact that this network 

model fitted the activity data suggests that this context based task elicits a generalised 

pattern of activation across the septotemporal axis of the hippocampus. It further 

suggests that the principal hippocampal anatomical connectivity, that is the trisynaptic 

loop, underpins the effective functional connectivity in these animals (Burwell, 2000; 

Aggleton, 2012); this is perhaps not surprising as half of the animals involved in this 

analysis – the baseline, home-cage control groups - were not in a position to learn 

anything novel. It was, therefore, striking that the same network model had very high 

levels of fit for three out of the four behavioural groups. Thus, it was subsequently used 

as a basis for the development of more regionally specific optimal group models.   

Often the dorsal hippocampus is associated with spatial memory (Moser et al., 1993; 

Bannerman et al., 2004). The term dorsal hippocampus encompasses both the septal and 

intermediate levels of the delineation used here (Bast et al., 2009). The septal 

hippocampus did not produce models of acceptable fit for any of the groups; however, 

the intermediate level was implicated in two network models that had good fit for the 

activity data from group Sham Novel (Figures 5.12, 5.13). Perhaps relevant to the 

present results is the fact that the intermediate, and not the septal, hippocampus has been 

shown to be particularly important in place learning (Bast et al., 2009). Although the 
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contribution of rhinal cortex structures differed between the two well-fitting models for 

group Sham Novel, the qualitative structure of the connections projecting from the 

medial entorhinal cortex to hippocampal subfields and the intrinsic hippocampal 

connections remained constant across them. This same structure is also seen in the 

model of early spatial cue learning from Poirier et al. (2008), however, their model 

involved the septal level of the hippocampus rather than the intermediate level. Thus, 

although the network models for novel context learning and novel cue-based spatial 

learning are not identical, they seem to share common features.   

Previous studies comparing novelty with familiarity processing using a similar IEG-

imaging paradigm found another common feature. Novelty processing was associated 

with higher functional connectivity from entorhinal cortex along the tri-synaptic circuit 

of the hippocampus whereas familiarity processing involved a greater effective 

connection between the entorhinal cortex and CA1 (Poirier et al., 2008; Albasser et al., 

2010b; Chapters 3, 4). This result was not repeated in the present study. Stacking the 

activity data from the Sham Novel and Sham Baseline groups, on the models derived for 

group Sham Novel, revealed that the main difference between the groups was a greater 

effective connection between medial entorhinal cortex and dentate gyrus in the baseline 

activity data, i.e. the group experiencing familiar stimuli. This is almost the opposite 

pattern to that expected. This may indicate that the previously observed pattern of 

novelty/familiarity driven hippocampal engagement does not extend to contextual 

processing. However, the result may be because the comparison between exposure to a 

novel activity box (in a novel room) and home-cage controls was not the appropriate 

comparison for the present experiment in relation to the previous studies. In the 

preceding protocols, the familiar stimuli were made familiar by a maximum of twelve 

previous exposures, whereas the present baseline animals were exposed to their home-

cage almost continuously for several months. In another study that explored Fos 

expression, it was found that exposure of rats to an entirely novel context was associated 

with increased Fos expression when compared to rats that had previously been exposed 

to the context five times. Both groups had several times the Fos expression of the home-

cage controls (VanElzakker et al., 2008). Thus it is clear that Fos expression related to 

the home-cage is not equivalent to Fos expression related to a stimulus made familiar by 

repeated, but limited, exposures.  Additionally, for the Sham Baseline group, when the 

lateral entorhinal cortex was included in the model, medial entorhinal cortex has a very 

strong effective connection with intermediate CA1 (Figure 5.12C) that is not present for 

group Sham Novel (Figure 5.12A). Thus, the proposed pattern of hippocampal 
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activation when comparing novel and familiar stimuli may still occur for contextual 

information under more controlled circumstances. 

5.4.1.3 Testing the ‘where’ pathway 

The model depicted in Figure 5.13 essentially captures the canonical view of spatial 

processing; it maps on to the ‘where’ pathway of the binding of item and context (BIC) 

model (Diana et al., 2007; Ranganath, 2010). During novel context exploration, the 

postrhinal cortex recruits the medial entorhinal cortex which subsequently engages the 

three subfields of the hippocampus; the dentate gyrus, CA3 and CA1. Indeed, this model 

anatomically refines the BIC model as it indicates that when rats are learning about a 

novel context the medial entorhinal cortex recruits the intermediate level of the 

hippocampus by both the temporoammonic and perforant pathways. Although MEC 

cortical layers were not separated in the current experiment, this result echoes that of 

novel object recognition in Chapter 3. In that study, either LEC cortical layers II or III 

(associated with the perforant and temporoammonic pathways, respectively), were 

associated with novel object discrimination.  

This result complements those of Chapters 3 and 4 in providing evidence to support the 

BIC model. The ‘what’ pathway involving the perirhinal cortex to LEC and onto the 

hippocampus is involved in object processing, while the postrhinal cortex to MEC and 

the hippocampus is engaged during context processing.  

This object-context pathway dichotomy also maps onto Knierim’s local vs. global 

reference frames model (Knierim et al., 2006, 2014). However, this model places greater 

emphasis on crosstalk between the two pathways. Interestingly, there is gathering 

evidence, particularly from single unit recordings in the rat, that LEC also plays a role in 

spatial processing, albeit to a lesser extent than its role in object processing, and 

typically in relation to item locations (Deshmukh et al., 2012; Hunsaker et al., 2013; 

Neunuebel et al., 2013; Knierim et al., 2014). The more complex model depicted in 

Figure 5.12 supports this notion.  

5.4.2  Technical considerations  

A potential limitation of the present study is that it involved two separate cohorts of 

animals that were tested at different times. The rats of cohort JAR166 were four months 

older than cohort JAR169 and consequently had the perirhinal lesions for four months 

longer. In order to address this limitation, an effort was made to balance rats from the 

different cohorts evenly between the four behavioural groups. However, due to the 
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prevalence of extra-perirhinal damage in cohort JAR166 it was necessary to exclude a 

relatively larger number of rats from this cohort, leaving this group slightly under 

represented in the final analyses. Further, the lesion size of the rats in cohort JAR166 

that remained in group Peri Novel appeared smaller than that of the other groups. It is, 

however, worth noting that this perirhinal sparing was observed at the rostral level of the 

perirhinal cortex, while the mid and caudal perirhinal levels had seemingly comparable 

lesions to those in the other groups. Notably, the mid and caudal perirhinal levels have 

more numerous connections with the hippocampus (Furtak et al., 2007).  

Aside from these differences, the training history of both cohorts was very similar. Both 

groups of animals were approximately three months old and experimentally naïve at the 

time of surgery. Further, both cohorts had been trained on object recognition tasks in an 

open field and the bow-tie maze, before being rested for approximately two weeks then 

beginning the current test. Thus, learning opportunities prior to the present experiment 

were very similar for the groups of animals. Additionally, the immunohistochemical 

staining for Fos was undertaken simultaneously for animals from both cohorts to reduce 

variance associated with this protocol. Based on these similarities, along with the fact 

that both cohorts of rats were represented in every behavioural group, it was presumed 

that group comparisons were appropriate.  

Another possible caveat of the present study is the absence of a behavioural measure 

associated with contextual learning. The paradigm was chosen as this single exposure to 

a novel context is similar to the single exposure to novel objects that rats in the novel 

object condition received in the experiment described in Chapter 3. Additionally, 

contextual processing is known to engage the hippocampus (Honey & Good, 1993; 

Good & Bannerman, 1997; Mumby et al., 2002), and exposure to a novel context has 

been shown to increase hippocampal Fos expression (VanElzakker et al., 2008). 

However, the present results could be interpreted more readily if it were known if the 

lesions elicited a behavioural deficit. Of potential relevance are object-based studies that 

indicate that the perirhinal cortex is not involved in contextual processing (Eacott & 

Norman, 2004; Norman & Eacott, 2005). In addition, perirhinal lesions do not disrupt 

passive place learning in the water maze, a task similar to the one administered here as 

in the sample phase the rat is simply placed on the platform and learns about its position 

incidentally (unpublished observations). 
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5.4.3 Summary  

To summarise the results of this experiment, in a task known to engage the 

hippocampus, hippocampal activity (as measured by Fos expression) remained 

unperturbed by lesions to the perirhinal cortex, indicating that hippocampal activity can 

be maintained in the absence of the perirhinal cortex, even when hippocampal Fos 

activity is high and so should be more sensitive to dysfunction. This finding again points 

to the functional independence of these two structures. Instead, perirhinal lesions 

affected activity and connections of the other rhinal cortices. 

In addition, activity related to novel context processing did not fit previously derived 

network models of parahippocampal-hippocampal interactions for different types of 

novelty processing, although the common feature of the engagement of several 

hippocampal subfields was observed. 

Finally, the network models of novel context processing derived here map onto two 

models that postulate how regions of the medial temporal lobe interact to support 

different forms of memory. These are the binding of item and context model (Diana et 

al., 2007) and the local vs. global reference frames model (Knierim et al., 2014).
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6 Mapping medial temporal 
interactions in response to novel 
objects: The impact of perirhinal 
cortex lesions in rats 

6.1 Introduction 

Expression of c-fos has revealed different patterns of integrated neuronal activity across 

medial temporal lobe sites when rats are engaged in novel object recognition or recency 

memory tasks. Using structural equation modelling on c-fos data generated from animals 

engaged in an object recognition task, it has been demonstrated that this task recruited 

the pathway from lateral entorhinal cortex (cortical layer II or III) to hippocampal field 

CA3 and, thence, to CA1. Familiar stimuli in a recency task recruited the direct pathway 

from lateral entorhinal cortex (principally layer III) to CA1 (Albasser et al., 2010b; 

Chapter 3, Chapter 4).  Additionally, using structural equation modelling, it was 

demonstrated that the functional connectivity in the parahippocampal cortex related to 

recognition or recency memory was not disrupted by lesions to the hippocampus 

(Chapter 3).   

There are many models that postulate how mnemonic processing is achieved by regions 

of the medial temporal lobe; one such example describes the rhinal cortex (the perirhinal 

and entorhinal cortices) as the ‘gatekeeper’ of the declarative memory system 

(Fernández & Tendolkar, 2006). In that model it is assumed that a novel item will 

increase rhinal processing, leading both to a feeling that the item is unknown and 

enhanced transfer to the hippocampus for further encoding.  Conversely, the more 

familiar an item is, the less perirhinal processing it requires and the less vigorously it 

will be encoded in memory (Fernández & Tendolkar, 2006).  Another example of a 

mnemonic processing model is the binding item and context model (Diana et al., 2007; 

Eichenbaum et al., 2007). In this model, it is postulated that the perirhinal cortex 

engages in ‘item’ processing while parahippocampal cortex (the primate homologue of 

rodent postrhinal cortex) is involved in processing ‘context’. These two cortical regions 

convey information to the lateral and medial entorhinal cortices respectively, which 

subsequently relay this information to the hippocampus where it is bound together 

(Diana et al., 2007). These functional models along with others (Aggleton & Brown, 
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1999, 2001, 2006; Bussey & Saksida, 2007; Neunuebel et al., 2013; Knierim et al., 

2014) imply that the perirhinal cortex has a significant impact on hippocampal 

processing. Thus, it could be supposed that removal of the perirhinal cortex would cause 

dysfunction in hippocampal processing. The first aim of Experiment 1 was to examine 

the functional impact, on the hippocampus (using c-fos expression), of removal of the 

perirhinal cortex during a novel object recognition task.  The next aim was to determine 

the extent to which the previously derived learning–related networks in the hippocampus 

depend on integrity of the perirhinal cortex. Experiment 1 involved a 20 trial test of 

object recognition memory, run in a similar manner to that of Chapter 3, in a group of 

rats that had lesions in the perirhinal cortex and their surgical controls. If the 

novel/familiar pathway differences observed previously (Albasser et al., 2010b; Chapter 

3) depend on perirhinal signals of novelty, then perirhinal lesions should bias c-fos 

activity away from the ‘novel’ entorhinal layer II - CA3 pathway to the ‘familiar’ 

entorhinal layer III - CA1 pathway. In addition, the inclusion of surgical control rats 

presented an opportunity to corroborate and anatomically refine the previously derived 

novelty-related network model. 

In the novel object based experiments, described in this thesis thus far, rats were 

presented with discrimination trials; as such they were always confronted with one novel 

and one familiar object. An earlier set of c-fos imaging studies involved presenting novel 

visual stimuli to one eye while simultaneously presenting familiar stimuli to the other 

eye (Zhu et al., 1995b, 1996; Wan et al., 1999, 2004). Absolute increases in c-fos 

expression were seen in the perirhinal cortex and area Te2 of the hemisphere associated 

with novel stimuli when compared to that associated with familiar stimuli. Features of 

this experimental design meant that this increased activity was not associated with 

network activity. Thus, it remained unclear if the networks of activity observed up to 

this point were generated by the rats actively discriminating between a novel and a 

familiar object or simply by the presence of novel stimuli in the environment. To address 

this question a second experiment was carried out. Experiment 2 was designed to match 

Experiment 1 as closely as possible with one main difference; in each trial the rats were 

presented with two different novel objects. This experiment involved a second cohort of 

rats with perirhinal lesions, along with their surgical controls.     

In addition to assessing the behavioural stimuli that served to generate the previously 

derived functional network models, we also aimed to extend these network models to 

include regions beyond the medial temporal lobe but that are known to be functionally 
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connected. The medial prefrontal cortex is one such area that is required to interact with 

the perirhinal cortex to support object associative learning (Barker et al., 2007; 

Warburton & Brown, 2010). Additionally, it is known to be involved in cognitive tasks 

(Vertes et al., 2006; Heidbreder & Groenewegen, 2003). There are direct projections 

from the temporal region of CA1 to prelimbic cortex with return projections via the 

nucleus reuniens of the thalamus and retrosplenical cortex (Conde et al., 1995; Vertes et 

al, 2007; Prasad & Chudasama, 2013). In Experiment 1, rats were given a choice 

between classes of objects (novel or familiar) and so cognitive control presumably is at 

play when engaging in the task. The rats in Experiment 2 were presented with pairs of 

novel objects, and as such, did not have to make object class judgements. These pairs of 

novel objects were, however, dissimilar and so they must still make decisions about 

which objects to explore first, whether to return to a previously explored object, etc. 

Differences in prelimbic activity or functional connectivity could be anticipated between 

the groups based on the different task demands. 

There is substantial evidence that lesions to the perirhinal cortex disrupt successful 

object recognition memory in both primates and rodents (Zola-Morgan et al., 1989, 

Mumby & Pinel, 1994, Murray, 1996; Brown & Aggleton, 2001; Winters et al., 2008; 

Albasser et al., 2009; Warburton & Brown, 2010). What remains more contentious in the 

literature, is the nature of this disruption. The perceptual mnemonic feature conjunction 

model hypothesises that the perirhinal cortex functions in perception, as well as 

memory, by its involvement in the ventral visual processing stream (Bussey et al., 2005). 

The model proposes that stimuli are represented hierarchically throughout the ventral 

visual stream. Individual features of stimuli are represented early in visual processing in 

caudal brain regions. These representations become more integrated and complex in 

rostral brain regions until it converges on the perirhinal cortex, which functions to 

encode complex conjunctive representations of stimuli in order to allow for object 

identification (Murray & Bussey, 1999; Murray & Richmond, 2001; Bussey et al., 2005; 

Murray et al., 2007). This hierarchical representation viewpoint predicts that, upon loss 

of the perirhinal cortex, judgements of prior occurrence would have to be based on the 

lower level feature-based representations of the stimuli (McTighe et al., 2010). These 

feature-based representations would be more susceptible to interference, as specific 

features of an object, for example its colour or shape, are likely to overlap with those of 

other intervening stimuli creating feature ambiguity between stimuli (Bartko et al., 

2007a, b; Romberg et al., 2012). Thus, damage to the perirhinal cortex is predicted to 

cause novel objects to be perceived as familiar and, as a consequence, rats with 
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perirhinal lesions would be expected to spend less time exploring novel objects than 

intact rats. It follows that this deficit should be more profound with increasing numbers 

of stimuli due to greater proactive interference.   

Evidence for the feature conjugation model came from a study in which rats with 

perirhinal lesions and their surgical controls were presented with a single pair of 

identical sample objects (McTighe et al., 2010). During the retention interval the rats 

were either returned to their home-cage or placed in a visually restricted, low-

interference, environment. During the subsequent test phase the rats were presented with 

either the same pair or a different pair of identical objects. Rats with lesions explored the 

novel objects significantly less than the intact rats, but only when they had been held in 

their lit home-cage. When they were visually deprived during the retention interval, their 

subsequent exploration levels of the novel objects were restored to normal levels. This 

was interpreted as evidence of false-memories in the rats with perirhinal lesions, as they 

treated novel objects as familiar when interference could occur, but when interference 

was prevented, the rats performance was normal (McTighe et al., 2010). Another study 

carried out in mice found analogous results (Romberg et al., 2012).  

Contrary to the results described above, other studies that presented pairs of novel 

objects to rats with perirhinal lesions found that their total exploration times were no 

different from their surgical controls (Albasser et al., 2011a, 2015). Additionally, in the 

studies reporting evidence for ‘false memories’, all rodents displayed normal levels of 

exploration in the sample phase, indicating accurate novelty detection (McTighe et al., 

2010; Romberg et al., 2012). This was attributed to the memory trace of the sample 

objects being strong enough to cause subsequent interference during the test phase, but 

only when the animals were kept in their lit home-cage during the retention interval 

(Romberg et al., 2012). This implies that the combination of a single presentation of 

objects followed by time spent in a highly familiar, but non-sensory deprived 

environment, is sufficient to cause significant interference.  

In order to further probe this susceptibility to interference, the rats in Experiment 2 were 

presented with 20 pairs of dissimilar novel objects. This was done to maximise the 

number of different features to which they were exposed. If perirhinal lesions cause 

novel objects to be perceived as familiar, these rats should explore all objects less than 

their surgical controls. Additionally, this reduction in exploration should become more 

profound as the number of trials increases due to increasing proactive interference.  
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6.2 Materials and Methods 

6.2.1 Animals 

6.2.1.1 Experiment 1 – Novel-Familiar object discrimination 

Subjects were 29 male, Lister Hooded rats (Harlan). They were housed as described in 

General Methods section 2.2. These animals were pre-trained in the bow-tie maze (as 

described in General Methods section 2.3.3) and then given a single 10 trial novel object 

recognition test. Following this, they received either perirhinal cortex lesions (n = 17) or 

sham surgeries (n = 12). After recovery from the surgeries, they were tested a further 

seven times in the bow-tie maze on novel object recognition tasks with various delays 

between the sample and test phases. Following this, their spatial memory was tested in 

an active and passive placement water-maze experiment. Finally, they took part in the 

current c-fos imaging study when they were approximately 12 months old. 

6.2.1.2 Experiment 2 – Novel-Novel object exploration 

Subjects were 31 male, Lister Hooded rats (Harlan). They were housed as described in 

General Methods section 2.2. These animals had previously received either perirhinal 

cortex lesions (n = 18) or sham surgeries (n = 13). Following recovery from surgery they 

were pre-trained in the bow-tie maze (as described in General Methods section 2.3.3). 

They were then tested in the bow-tie maze twice; once on a novel object recognition task 

with long retention intervals and once on a recency task. Rats were approximately 11 

months old at the beginning of the present c-fos imaging study. 

6.2.2 Surgery 

The rats in both experiments were approximately three months old at the time of 

surgery. The surgeries were carried out by Dr. C. Olarte Sanchez using the same 

protocol for both cohorts of animals. The rats in Experiment 1 weighed between 290g 

and 350g, while in Experiment 2 the rats weighed between 290g and 340g at the time of 

surgery. Anaesthesia was induced in all animals using a mixture of oxygen and 

isoflurane gas, before placing them in a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA, USA), with the incisor bar set at +5.0 mm to the horizontal plane.  A 

midline sagittal incision was made in the scalp and the skin was retracted to expose the 

skull. A craniotomy was made above the injection sites. The lesions were made by 

injecting a solution of N-methyl-d-aspartate (NMDA; Sigma, Poole, UK) diluted to 

0.09M in PBS (0.1M, pH 7.4) using a 1µm Hamilton syringe (gauge 26s, outside 
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diameter 0.47 mm) held with a micro-injector (Kopf Instruments, Model 5000). Bilateral 

injections of NMDA were made at a rate of 0.10 µL ⁄ min, with a subsequent diffusion 

time of four minutes. The animals received three injections in each hemisphere (for co-

ordinates and volumes see Table 6.1). Rats in the surgical control (Sham) groups 

received identical treatment, except that the dura was perforated with the same Hamilton 

syringe but no fluid was infused into the brain. Following completion of the surgery, 5 

ml of glucose saline was administered subcutaneously to all rats and they were allowed 

to recover in a heated box until they regained consciousness. 

Table 6.1. Stereotaxic coordinates and infusion volumes for lesions of the PRH. 

Anteroposterior Mediolateral Dorsoventral 
Volume 

(µL) 

-1.8 ±5.9 -9.3 0.22 

-3.4 ±6.2 -9.5 0.20 

-5.0 ±6.3 -8.9 0.20 

6.2.3 Apparatus 

Testing for both Experiments 1 and 2 took place in a bow-tie maze described in the 

General Methods section (Figure 2.2).  

6.2.4 Objects 

All stimuli used in these experiments were three-dimensional plastic, glass or ceramic 

‘junk’ objects. Each object was large enough to cover a food well but light enough to be 

displaced by a rat. All objects were cleaned with 70% ethanol wipes after each session. 

Experiment 1 – Novel-Familiar object discrimination  

Experiment 1 utilised 20 different objects, each with an identical duplicate. 

Experiment 2 – Novel-Novel object exploration 

Experiment 2 utilised 40 different objects. 

6.2.5 Behavioural testing 

6.2.5.1 Pre-training and re-habituation to bow-tie maze 

Both cohorts of rats had been previously pre-trained in the bow-tie maze, as described in 

the General Methods section 2.2.3. The rats were then tested on different behavioural 
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tasks (as outlined above). Neither cohort had been tested in the bow-tie maze for at least 

3 months prior to the beginning of the present experiments. Due to the previous training 

in the bow-tie maze, only a single re-habituation session was carried out. This re-

habituation session involved three pairs of objects and followed the pre-training protocol 

described for days 4-7 in the General Methods section 2.2.3. Re-habituation was 

complete when the rats would run from one side of the maze to the other when the door 

was raised. This took 7-10 minutes for each rat.  

6.2.5.2 Animal groups 

Experiment 1 – Novel-Familiar object discrimination 

The rats with perirhinal lesions and their surgical controls were tested using the same 

behavioural protocol creating two groups; Peri Discrimination (n = 17) and Sham 

Discrimination (n = 12).   

Experiment 2 – Novel-Novel object exploration 

Again, all rats in this experiment were tested using the same behavioural protocol 

creating two groups; Peri Novel (n = 18) and Sham Novel (n = 13). 

6.2.5.3 Experiment 1 – Novel-Familiar object discrimination 

Animals were placed in a dark room for 30 minutes before testing began.  The 

behavioural procedure to induce Fos expression was carried out in a single test session 

which consisted of 20 trials with one minute per trial. This test session was identical to 

session 1 described in Chapter 3 (Section 3.2.5.3 “Shared protocol for session 1”).  The 

procedure is summarised in Figure 6.1; notably each trial consists of a novel object 

presented with a familiar object that is familiar because it was encountered on the 

previous trial.  

6.2.5.4 Experiment 2 – Novel-Novel object exploration test 

The aim of Experiment 2 was to match the behavioural procedure in Experiment 1 as 

closely as possible, while removing the discrimination component. As such, these rats 

were also placed in a dark room for 30 minutes before testing began and the single test 

session consisted of 20 trials with one minute per trial. The principal difference between 

the novel-familiar discrimination and novel-novel exploration conditions was that in 
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each trial of the novel condition the animals were presented with two different novel 

objects (Figure 6.1).  

On completion of their respective test sessions, the rats from both Experiments 1 and 2 

were returned to the same dark room for 90 minutes and then perfused as described in 

the General Methods section 2.4.  

 

Figure 6.1. General procedure showing the order of presentation of objects in 

novel-familiar discrimination and novel-novel exploration behavioural conditions. 

All objects are rewarded (+).  Red arrows show the directions of the rats’ movements while the blue 

arrow indicates progression through trials. Black letters denote novel objects while grey letters denote 

familiar objects.     

6.2.6 Analysis of behaviour 

The behavioural measures were calculated as described in General Methods section 

2.3.5 for animals in the novel-familiar discrimination condition. For the animals in the 

novel-novel exploration condition, the only measure that could be calculated was total 

cumulative exploration.  

Following the behavioural analyses the methods used and protocols followed were 

exactly the same for both Experiments 1 and 2.  

6.2.7 Lesion analysis 

As described in General Methods section 2.7. 

6.2.8 Immunohistochemistry 

As described in General Methods section 2.8. 
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6.2.9 Regions of interest  

All of the regions of interest (ROI) sampled for c-fos analysis are depicted in Figure 6.2. 

Two brain atlases (Swanson, 1992; Paxinos & Watson, 2005) helped to verify the 

locations of brain areas, unless otherwise specified. The anterior – posterior (AP) 

coordinates (mm from bregma) in the descriptions below and in Figure 6.2 are from 

Paxinos & Watson (2005) except the perirhinal cortex borders which are from Burwell 

(2001).  The regional groupings below reflect the groupings used subsequently in the 

statistical analyses of Fos counts. 

6.2.9.1 Auditory and motor cortex 

Counts of Fos-positive cells were made in the surgical control groups in the primary 

auditory cortex (Aud; from AP -4.80 to -5.52) and the primary motor cortex (from AP -

1.00 to -1.60), to provide areas where a null result might be expected if the behavioural 

tasks are well matched.  These regions were not analysed in the lesion groups as the 

effects of perirhinal lesions (a multi-sensory area) on auditory or motor cortex, to the 

best of my knowledge, is unknown. 

6.2.9.2 Parahippocampal cortex in surgical controls 

In the sham surgical groups only, Fos-positive cell counts could be made at the caudal 

level of areas 35 (ventral) and 36 (dorsal) of the perirhinal cortex (PRH; see Burwell, 

2001), as well as area Te2, and lateral entorhinal cortex (LEC) adjacent to caudal PRH 

from AP -4.80 to -5.52. This region of LEC, here termed rostral LEC (rLEC) is also 

referred to as the dorsal intermediate entorhinal (DIE) field (Insausti et al., 1997). As 

described in Chapter 3, neurons in LEC cortical layer II preferentially project to the 

dentate gyrus and CA3 while neurons in LEC layer III project to CA1 (Figure 6.3; 

Steward & Scoville, 1976; Amaral, 1993). Moreover, the hippocampus predominantly 

outputs to the deeper layers of the entorhinal cortex (Figure 6.3; Tamamaki & Nojyo, 

1995). Based on these differential connections, separate counts were made in layers II, 

III and V+VI (combined) of the rLEC, based on the cytoarchitecture of the DIE 

subdivision described in Insausti et al., (1997). The postrhinal cortex (POR) was also 

analysed for Fos-positive neurons from sections corresponding to AP -7.08 to -8.04. The 

borders were based on Burwell (2001), which corresponds to the caudal part of the area 

labelled as the ectorhinal cortex by Paxinos and Watson (2005). These regions were not 

analysed in the lesion groups due to the presence of extra perirhinal damage in a number 

of cases (detailed below).  
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Figure 6.2. Regions of interest for c-fos analyses 

Sites analysed:  Aud,  primary auditory cortex;  CA3 at intermediate (inter), septal (sept) and temporal 

(temp) levels; distal (dist) and proximal (prox) CA1; DG, dentate gyrus; dorsal dist sub, dorsal distal 

subiculum; dorsal prox sub, dorsal proximal subiculum;  LEC, lateral entorhinal cortex at caudal (c) 

rostral (r) levels;  MEC, medial entorhinal cortex;  PL, prelimbic cortex;  PRH, perirhinal cortex; 

POR, postrhinal cortex;  Reuniens, nucleus reuniens of thalamus; Te2, area Te2; ventral dist sub, 

ventral distal subiculum; ventral prox sub, ventral proximal subiculum. The numbers below refer to 

the approximate distance in mm from bregma. Panel -4.80 is repeated to allow for clear demonstration 

of all analysed regions. Adapted from the atlas of Paxinos & Watson (2005).  
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Figure 6.3. Simplified pattern of afferent inputs from the parahippocampal region 

to the hippocampal formation. 

The photomicrographs show coronal sections stained for Fos-positive cells from a rat in Sham Novel-

Familiar group. The areas shown on micrograph are area Te2, caudal perirhinal cortex and lateral 

entorhinal cortex with cortical layers delineated. For simplicity the schematic does not include the 

direct connections linking PRH (and POR) with CA1/subiculum or LEC with MEC. Abbreviations: 

Dist, distal; DG, dentate gyrus; II, cortical layer II; III, cortical layer III; LD, lamina dessicans; MEC, 

medial entorhinal cortex; POR, postrhinal; Prox, proximal; rLEC, rostral lateral entorhinal cortex; 

Te2, area Te2; V+VI, cortical layers V and VI combined; 35, area 35 of caudal perirhinal cortex; 36, 

area 36 of caudal perirhinal cortex. 

6.2.9.3 Caudal entorhinal cortex 

Cell counts were taken from the medial entorhinal cortex (MEC) as well as a more 

caudal region of LEC (cLEC) from AP -7.08 to -8.04; the boundaries based on Burwell 

and Amaral (1998). As described for rLEC, based on the differential laminar inputs to 

the hippocampus, separate counts were made in layers II, III and V+VI (combined) of 

the cLEC. The laminar divisions were based on the cytoarchitecture of the dorsal lateral 

entorhinal field described in Insausti et al. (1997). 
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6.2.9.4 Prelimbic cortex and thalamus 

Fos-positive cell counts were made within the prelimbic cortex (PL) region (from AP 

+4.20 to +2.76).  Cell counts were also made in the nucleus reuniens of the thalamus 

(from AP -1.44 to -2.52). 

6.2.9.5 Hippocampal Formation 

Hippocampal subfields (dentate gyrus, CA1, and CA3) were divided into their septal 

(dorsal), intermediate, and temporal (ventral) divisions (Bast, 2007; Strange et al., 2014). 

The CA1 subfield was further subdivided into its proximal and distal (relative to DG) 

regions. The septal hippocampus counts (dentate gyrus, CA3 and CA1) were obtained 

from AP -2.52 to 3.24, while those for the intermediate hippocampus (dentate gyrus, 

CA1, CA3) came from sections near AP -4.80 to -5.52. The border between the 

intermediate and temporal hippocampus corresponds to -5.0 dorsoventral from bregma 

(Paxinos & Watson, 2005). Within the temporal (ventral) hippocampus, counts were 

made in the CA1 and CA3 fields at approximately AP -4.80 to -5.52. Additional cell 

counts were taken in both the dorsal and ventral subiculum (from around AP -5.16); as 

with CA1, the subicular divisions were further subdivided into proximal and distal 

regions. This additional proximal-distal dimension was added due to the differential 

projections of the entorhinal cortex; LEC has a stronger projection to distal CA1 and 

proximal subiculum (i.e. inputs terminate around the border between CA1 and 

subiculum) while MEC preferentially projects to proximal CA1 and distal subiculum 

(Amaral, 1993; Witter, 1993).    

6.2.10 Image capture and analysis of c-fos activation 

As described in General Methods section 2.9. 

6.2.11 Statistical analysis 

6.2.11.1 Behavioural data 

Initially, the behavioural data for Experiments 1 and 2 were analysed separately, 

comparing the lesion groups with their surgical controls.  For Experiment 1, to compare 

groups Peri Discrimination and Sham Discrimination, a two-sample t-test (two-tailed) 

was calculated for total cumulative exploration while two-sample t-tests (one-tailed) 

were employed to compare cumulative D1 and updated D2 scores. These measures were 

analysed separately as they are not independent. One-sample t-tests (one-tailed) were 

also calculated on the cumulative D1 and updated D2 scores after the final test trial of 
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the test session to determine if discrimination performance was significantly above 

chance level (zero) for each group.  Mean explorations times were further analysed by 

separating them by object class (novel or familiar) and then dividing this into four 

blocks of five consecutive trials. As the novel and familiar exploration times were 

obtained from the same trials these data cannot be considered to be independent and so 

exploration times for the object classes were analysed by separate ANOVAs with one 

between-subjects factor (lesion type) and one within-subjects factor (block). 

For Experiment 2, the mean exploration times were grouped into four blocks of five 

consecutive trials, which were compared between the groups Peri Novel and Sham 

Novel by an ANOVA with one between-subjects factor (lesion type) and one within-

subjects factor (block). 

In addition, the total cumulative exploration for all four animal groups was compared 

using an ANOVA with two between-subjects factors [Lesion type (Sham, perirhinal 

lesion) and behavioural condition (Discrimination, Novel)].  

Finally, the mean amount of exploration time each rat dedicated to novel objects was 

calculated. For the novel-familiar discrimination condition this was done by dividing the 

total amount of exploration dedicated just to novel objects by 20, while for rats in the 

novel-novel exploration condition, total cumulative exploration was divided by 40. 

Mean novel object exploration was also compared using an ANOVA with two between-

subjects factors as described for total cumulative exploration. 

6.2.11.2 Fos data 

Initially, regional Fos counts were compared separately for Experiments 1 and 2. These 

comparisons involved separate ANOVAs based on the regional groupings described 

above. For each ANOVA, lesion was included as the between subject factor and ROI as 

the within subject factor.     

Subsequently, the Fos counts in the control areas (sham groups only) were compared 

between Experiments 1 and 2 using a one between-subject (behavioural condition) by 

one within-subject (ROI) ANOVA. The same type of analysis was carried out to 

compare the number of Fos-positive cells in the rostral parahippocampal cortex and 

separately for the cortical layers of rLEC between the behavioural conditions.  

Following this, the number of c-fos activated cells in the extra-hippocampal regions of 

interest common to all animal groups was compared. This was accomplished by 

calculating ANOVAs with two between-subject factors (lesion type and behavioural 
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condition) and one within-subject factor (ROI). This type of analysis was carried out 

separately for three regional groupings: i) caudal entorhinal cortex, ii) cLEC cortical 

layers, iii) prelimbic cortex and nucleus reuniens of the thalamus.  

Within the hippocampal formation, the subfields were divided and analysed 

differentially based on their anatomical connections; thus, comparisons were made in 

each of the subfields individually. The effect of behavioural condition and lesion status 

on the number of Fos-positive cells in CA1 and the subiculum were compared by 

calculating separate ANOVAs with two between-subject factors (lesion type and 

behavioural condition) and two within-subject factors (proximal-distal dimension and 

septotemporal level). The CA3 and dentate gyrus subfields were analysed by two 

between-subject factor (lesion type and behavioural condition) and one within-subject 

factor (septotemporal level) ANOVAs. These grouping procedures were carried out to 

reduce the number of comparisons and, thereby, reduce the likelihood of Type 1 errors. 

Where an interaction was found to be significant, the simple effects were examined. 

Inter-regional Pearson product-moment correlation coefficients were calculated for the 

Fos-positive cell counts in all sites. The levels of the correlations obtained between 

prelimbic cortex and perirhinal cortex were also compared between the groups using 

Fisher's r-to-z transformation (Zar, 2010).   

6.2.12 Structural equation modelling 

As described in General Methods section 2.11. 

6.3 Results 

6.3.1 Lesion analysis  

Experiment 1 – Novel-Familiar object discrimination  

This experiment was carried out with animal cohort JAR172. Five rats with perirhinal 

lesions were rejected due to loss of hippocampal tissue in more than one section. Thus, 

final group sizes were Perirhinal Novel-Familiar, n=12 and Sham Novel-Familiar, n=12. 

Perirhinal damage ranged from 53.7% to 97.6% (mean 73.7%). Additionally, none of the 

behavioural measures significantly correlated with lesion size (total exploration: r = 

0.50, p = 0.096; cumulative D1: r = 0.05, p = 0.86; updated D2: r = -0.14, p = 0.68) 

indicating that smaller lesions did not lead to sparing of behaviour. A total of five left 

hemispheres and seven right hemispheres were analysed in both groups. The lesions 
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typically involved almost the full anterior-posterior extent of areas 35 and 36 (Figure 

6.4).  A frequent feature was the encroachment of the lesion into the most dorsal parts of 

the piriform cortex and LEC (Figure 6.4), i.e., those cortices adjacent to area 35. 

Experiment 2 – Novel-Novel object exploration 

This experiment was carried out with animal cohort JAR177. Nine rats with perirhinal 

lesions were rejected due to damage involving the hippocampus. One surgical control rat 

was eliminated due to the presence of idiopathic damage to the left frontotemporal 

cortex.  Final group sizes were, therefore, Perirhinal Novel, n = 9 and Sham Novel, n = 

12. A total of two left hemispheres and seven right hemispheres were analysed in both 

groups, as well as an additional three left hemispheres in the Sham control group.  

Perirhinal damage ranged from 63.9% to 98.3% (mean 82.8%) and did not significantly 

correlate with exploration times (r = -0.39, p = 0.31). The appearance of the lesions in 

Cohort 177 matched those in Cohort 172 (Figure 6.4), with no overall difference in 

perirhinal tissue loss (t19 = 1.68, p = 0.11).  
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Figure 6.4. Perirhinal lesion reconstructions. 

Diagrammatic reconstructions of the perirhinal cortex lesions showing the individual cases with the 

largest (grey) and smallest (black) lesions for group Peri Discrimination (left; n=12) and group Peri 

Novel (right; n=9). The numbers refer to the distance (in millimetres) from bregma (adapted from 

Paxinos & Watson, 2005).  

6.3.2 Behavioural testing 

6.3.2.1 Experiment 1- Novel-Familiar object discrimination 

Comparisons between the groups Peri Discrimination and Sham Discrimination revealed 

that lesions to the perirhinal cortex did not alter the total amount of time rats spent 

exploring all objects (t22 = 0.34, p = 0.73; Figure 6.5 upper left panel). Further to this, 

both groups discriminated above chance levels based on both the cumulative D1 scores 

(Peri Discrimination: t11 = 5.20, p < 0.001; Sham Discrimination: t11 = 14.8, p < 0.0001; 

Figure 6.5 lower left panel) and updated D2 ratio (Peri Discrimination: t11 = 6.11, p < 
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0.0001; Sham Discrimination: t11 = 15.4, p < 0.0001; Figure 6.5 lower right panel). 

However, perirhinal lesions significantly reduced the efficiency of discrimination as 

measured by both cumulative D1 (t22 = 2.26, p = 0.017; Figure 6.5 lower left panel) and 

updated D2 (t22 = 2.38, p = 0.014; Figure 6.5 lower right panel).  Taken together, these 

results demonstrate that removal of the perirhinal cortex significantly reduced the rats’ 

ability to discriminate object novelty but do not entirely prevent it at these very short 

retention intervals (< 1 minute).  

Additional analyses were carried out on the exploration data; these were divided into 

four blocks of five trials each to investigate changes in total exploration over the course 

of the test session separately for novel and familiar objects (Figure 6.5, middle panel). 

The lesion status did not affect the amount of exploration dedicated to novel objects (F < 

1) nor did the amount of exploration towards novel objects change over the course of the 

test session (F3,66 = 1.17, p = 0.33). There was however, a lesion by trial position 

interaction (F3,66 = 4.70, p = 0.005); this was as the rats in the Sham Discrimination 

group displayed higher levels of exploration to novel objects in trials 6-10 than group 

Peri Discrimination. There were no lesion differences seen in the other blocks of trials. 

A similar analysis revealed no overall differences between the two groups on the amount 

of familiar object exploration (F < 1).  Exploration of familiar objects changed as the test 

session progressed (F3,66 = 4.82, p = 0.004) but this was not differentially affected by 

perirhinal lesions (F3,66 = 1.24, p = 0.30). The change in exploration with trial 

progression is due to the reduced levels of exploration of familiar objects in trials 16-20 

compared to the preceding blocks. 

6.3.2.2 Experiment 2- Novel-Novel object exploration 

Perirhinal lesions did not affect the total amount of time rats spent exploring novel 

objects, as there was no difference between groups Peri Novel and Sham Novel on total 

amount of object exploration (F1,19 = 1.50, p = 0.24). The exploration data were 

separated into four blocks of five trials each to investigate changes in exploration over 

the course of the test session (Figure 6.5, upper right panel). This analysis revealed a 

significant effect of block (F3,57 = 5.68, p = 0.002). Examination of the upper right panel 

of Figure 6.5 illustrates that the effect of block is due to the greater exploration in the 

first block of trials but this was not modified by perirhinal lesions (F3,57 = 2.16, p = 

0.10). Thus, exploration levels for the two groups were highly comparable. 
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6.3.2.3 Total cumulative exploration time comparison between conditions 

Comparisons across the experiments revealed that rats presented with two novel objects 

spent significantly more time exploring those objects than rats presented with one novel 

and one familiar object in each trial (F1,41 = 18.4, p < 0.001).  Interestingly, this 

increased exploration was not affected by perirhinal lesions (F < 1) and there was no 

interaction between behavioural condition and lesion (F1,41 = 1.67, p = 0.20).   

Further, the mean amount of exploration each rat devoted to novel objects was 

calculated and compared between the groups (not depicted). The pattern of these results 

matched that described for total cumulative exploration; on average rats in the novel-

novel exploration condition spent more time exploring each individual novel object than 

the rats in the novel-familiar discrimination condition (F1,41 = 6.23, p = 0.017). The 

perirhinal lesions did not cause differences (F < 1), nor was the interaction significant 

(F1,41 = 2.47, p = 0.12). This indicates that when a novel object is placed in competition 

with a familiar one, the amount of exploration dedicated to the novel object is reduced.  

6.3.3 Fos-positive cell counts 

Initially, the regional Fos-positive cell counts obtained from each experiment were 

compared separately to investigate the regional effects of lesions to the perirhinal cortex 

on each of the behavioural conditions. Surprisingly, no significant differences were 

found between groups Peri Discrimination and Sham Discrimination in any of the 

regional Fos counts (Table 6.2). Furthermore, the only significant difference between 

groups Peri Novel and Sham Novel was in the subiculum;  the perirhinal lesions 

differentially affected Fos counts in the proximal and distal regions of the subiculum 

(F1,19 = 5.55, p = 0.029). Examination of the simple effects revealed that in the surgical 

control rats the distal region had higher Fos counts than the proximal region of the 

subiculum (F1,19 = 34.5, p < 0.001). This difference was not observed in rats with 

perirhinal lesions (F1,19 = 3.90, p = 0.063); indicating the perirhinal lesions reduced Fos 

expression in distal subiculum. No other significant lesion effects or interactions were 

obtained (Table 6.2). 
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Figure 6.5. Behavioural measures for Experiments 1 and 2. 

The upper left panel depicts the cumulative exploration times across the 20 test trials for all four 

groups. The upper right panel illustrates mean total exploration times of rats in Experiment 2 (novel-

novel exploration) blocked into four sets of five consecutive trials. The middle panel shows the 

separate exploration levels for the novel and familiar objects in Trials 1–20, grouped into four blocks 

of 5 trials of rats in the novel-familiar discrimination condition. The lower panels depict 

discrimination performance in Experiment 1 – novel-familiar discrimination condition: cumulative D1 

(lower left panel) and updated D2 ratio (lower right panel) across 20 trials. All discrimination scores 

are significantly above zero (one-sample t tests, all p < 0.001). * p < 0.05 Data are presented as means 

±SEM.    
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Table 6.2. Statistics when Fos-positive cell counts analysed separately for 

Experiments 1 and 2. 

 

Peri Discrimination vs. 

Sham Discrimination Peri Novel vs. Sham Novel 

 
F-value df p-value F-value df p-value 

Caudal entorhinal cortex  

      Lesion effect 1.78 1,22 0.20 0.0002 1, 19 0.99 

Lesion*Region effect 1.02 1,22 0.32 0.55 1, 19 0.47 

cLEC cortical layers 

      Lesion effect 1.77 1,22 0.20 0.073 1, 19 0.79 

Lesion*Region effect 2.25 2,44 0.12 2.97 2, 38 0.064 

PL + reuniens 

      Lesion effect 0.098 1,22 0.76 0.007 1,19 0.93 

Lesion*Region effect 0.058 1,22 0.81 0.130 1,19 0.72 

CA1 

      Lesion effect 0.031 1,22 0.86 0.327 1,19 0.57 

Lesion*level effect 1.16 2,44 0.32 0.358 2,38 0.70 

Lesion*proximal-distal effect 0.891 1,22 0.36 0.903 1,19 0.35 

Lesion*level*proximal-distal effect 0.428 2,44 0.65 0.701 2,38 0.50 

CA3 

      Lesion effect 0.008 1,22 0.93 4.28 1,19 0.052 

Lesion*level effect 1.50 2,44 0.23 0.076 2,38 0.93 

DG 

      Lesion effect 0.047 1,22 0.83 3.09 1,19 0.10 

Lesion*level effect 1.33 1,22 0.26 0.217 1,19 0.65 

Subiculum 

      Lesion effect 0.099 1,22 0.76 2.08 1,19 0.17 

Lesion*dorsal-ventral effect 0.049 1,22 0.83 0.248 1,19 0.62 

Lesion*proximal-distal effect 0.231 1,22 0.64 5.55 1,19 0.029* 

Lesion*proximal-distal*dorsal-

ventral 0.004 1,22 0.95 0.033 1,19 0.86 

6.3.3.1 Auditory and motor cortex – comparison of Fos counts in Sham groups 

Prior to contrasting rats from Experiments 1 and 2, it was necessary to determine if their 

baseline Fos counts were comparable, as would be predicted if the two behavioural tasks 

were appropriately matched.  Fos counts in the auditory cortex and motor cortex 

revealed no group difference in the two sets of sham controls (F1,22 = 0.12, p = 0.73; 

Figure 6.6 upper panel), nor was there a significant region by condition interaction (F1,22 

= 2.29, p = 0.15). These two sites would not be expected to interact with the behavioural 

conditions. Accordingly, the behavioural conditions were considered to be sufficiently 
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matched, allowing for subsequent regional analyses of Fos expression to compare the 

two behavioural conditions. 

6.3.3.2 Rostral parahippocampal cortex – comparison of Fos counts in Sham 

groups 

Discriminating novel from familiar objects as compared to exploring only novel objects 

did not cause an overall difference in the number of Fos-positive neurons in the rostral 

parahippocampal cortex of surgical control rats (F1,22 = 2.31, p = 0.14; Figure 6.6 middle 

panel, Figure 6.7). A significant region by behavioural condition interaction was found 

(F4,88 = 6.55, p < 0.001) which reflected higher Fos expression in the rostral LEC of the 

Sham Discrimination group than the Sham Novel group (F1,22 =10.1, p = 0.004).  

Neurons in the superficial cortical layers of the LEC preferentially project to the 

hippocampus, while the deeper layers predominantly receive hippocampal output 

(Steward & Scoville, 1976; Amaral, 1993; Tamamaki & Nojyo, 1995). Based on this 

knowledge and the result above, the number of Fos-positive cells were separated 

between cortical layers II, III and V+VI (combined), and then compared between the 

behavioural conditions in order to assess if novel-familiar object discrimination caused a 

general or pathway specific increase in activity (Figure 6.6 lower panel).  This analysis 

revealed a main effect of the behavioural condition (F1,22 = 9.51, p = 0.005) as well as a 

significant behavioural condition by layer interaction (F2,44 = 9.87, p < 0.001). 

Examination of the simple effects indicated that this interaction reflected higher Fos 

expression associated with the novel-familiar discrimination condition in hippocampal 

input cortical layer II (F1,22 = 23.3, p < 0.001) and layer  III (F1,22 = 5.96, p = 0.023) but 

not the deeper cortical layers (F < 1).  
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Figure 6.6. Mean counts of Fos-positive cells in groups Sham Discrimination and 

Sham Novel. 

Graphs depicting mean counts of Fos-positive cells in the two groups of surgical control rats in the 

primary auditory and motor cortex cortex (upper panel), the rostral parahippocampal cortex and 

postrhinal cortex (POR) (middle panel) and individual cortical layers of rostral lateral entorhinal 

cortex (lower panel). Data are presented as means ±SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 6.7. Representative photomicrographs of rostral parahippocampal cortex. 

These sections depict Fos-positive cells in cortical area Te2, caudal PRH composite areas 35 and 36 

and rostral lateral entorhinal cortex (rLEC) for groups, Sham Discrimination (left panel) and Sham 

Novel (right panel). Scale bar: 200µm. 

6.3.3.3 Caudal entorhinal cortex – comparison of Fos counts 

Analysis of a more caudal region of the entorhinal cortex allowed for the impact of 

perirhinal lesions on the medial and lateral entorhinal regions to be compared between 

the two behavioural conditions. There was no overall effect of perirhinal lesions on Fos-

positive cell counts at the caudal level of the entorhinal cortex (F1,41 = 1.22, p = 0.28), 

nor did the lesions differentially affect the two behavioural conditions (F1,41 = 1.17, p = 

0.27). There was, however, a significant main effect of the behavioural condition (F1,41 = 

4.22, p = 0.046), as higher Fos counts were seen  in both regions following 

discrimination, regardless of surgery (Figure 6.8 upper panel).  This main effect was 
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observed equally across the entorhinal cortex as neither the behavioural condition, nor 

the perirhinal cortex lesions displayed a significant regional interaction (F < 1), nor was 

the three way interaction significant (F1,41 = 1.46, p = 0.23). 

In order to investigate this result further, as described above, the number of Fos-positive 

cells in cortical layers II, III and V+VI (combined) in this caudal region of LEC were 

analysed. The laminar activity was compared to evaluate if the lamina difference in 

rostral LEC for the two behavioural conditions (see above) generalised to the caudal 

LEC (Figure 6.8 middle panel). This analysis revealed no overall effect of the 

behavioural condition on the caudal LEC cortical layers (F1,41 = 2.87, p = 0.098). Again 

there was no effect of perirhinal lesions (F < 1), nor was there a significant behavioural 

condition by lesion interaction (F1,41 = 1.47, p = 0.23).  Interestingly, the cortical layers 

were differently modified by the behavioural condition (F2,82 = 4.04, p = 0.021) as rats in 

the novel-familiar discrimination condition had significantly higher Fos counts in 

hippocampal input cortical layer II (F1,41 = 5.43, p = 0.025) and layer  III (F1,41 = 5.65, p 

= 0.022) but not the deeper cortical layers (F < 1) associated with hippocampal output. 

Again, this suggests that active discrimination leads to greater activity in hippocampal 

input layers compared to novel object exploration.  Finally, the layer by lesion 

interaction was also significant (F2,82 = 4.52, p = 0.014). Simple effects demonstrated 

that cortical layer III was differentially affected by lesions to the perirhinal cortex; the 

lesions caused a reduction in the number of Fos-positive cells in layer III (F1,41 = 4.42, p 

= 0.042) but not layer II or V+VI (F < 1 for both comparisons) regardless of the  

behavioural condition.   

6.3.3.4 Prelimbic cortex and thalamus – comparison of Fos counts 

Fos-positive cell counts in the prelimbic cortex and nucleus reuniens of the thalamus 

were not affected by the behavioural task (F1,41 = 2.74, p = 0.11; Figure 6.8 lower panel) 

or lesions status (F < 1), nor was the interaction significant (F < 1).  Similarly, neither 

the behavioural task nor the perirhinal cortex lesions differentially affected these two 

regions (F < 1 for all interaction terms).     
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Figure 6.8. Mean counts of Fos-positive cells in caudal entorhinal cortex, prelimbic 

cortex and nucleus reuniens. 

Graphs depict mean counts of Fos-positive cells in all four behavioural groups in: 1) the caudal 

entorhinal cortex (upper panel), 2) individual cortical layers of caudal lateral entorhinal cortex (LEC; 

middle panel) and 3) prelimbic cortex (PL) and nucleus reuniens of the thalamus (lower panel). Data 

are presented as means ±SEM. * p < 0.05. 
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6.3.3.5 Hippocampal formation subfields – comparison of Fos counts 

Based on the various ways in which the hippocampal formation subfields were divided 

for Fos analysis, each of the subfields was analysed separately to compare for lesion 

effects and effect of behavioural condition.  

CA1 Fos    

Perirhinal cortex lesions did not affect the overall level of Fos expression in CA1 (F < 1; 

Figure 6.9A), the effect of the behavioural task, although close, also did not reach the 

level of significance (F1,41 = 3.74, p = 0.06) nor did the interaction between these terms 

(F < 1). Septal CA1 contained fewer Fos cells than the other CA1 levels (F2,82 = 108, p < 

0.001), but this difference did not interact with lesion status (F < 1). There was, 

however, a significant interaction between septotemporal level and behaviour (F2,82 = 

14.0, p < 0.001) as Novel-Novel object exploration resulted in relatively increased Fos 

expression over Novel-Familiar discrimination in temporal CA1 (F1,41 = 17.6, p < 0.001), 

but not in the septal or intermediate levels (F1,41 = 1.02, p = 0.32; F < 1 respectively; 

Figure 6.9A).    

The septal-temporal level of CA1 differentially influenced the proximal-distal 

distribution of Fos counts (F2,82 = 68.6, p < 0.001; Figure 6.9A).  At septal and 

intermediate levels of CA1, the proximal region had the higher Fos counts (F1,41 = 84.1, 

p < 0.001; F1,41 = 19.3, p < 0.001, respectively) while in temporal CA1 the opposite 

pattern was seen (F1,41 = 70.2, p < 0 .001). This interaction between the proximal-distal 

and septotemporal dimensions was not modified by perirhinal cortex lesions (F2,82 = 

1.12, p = 0.34), though it was altered by the behavioural condition (F2,82 = 5.28, p = 

0.007). There were no behavioural differences observed for proximal-distal CA1 at 

septal and intermediate levels (F < 1), whereas at the temporal level of CA1 both the 

proximal and distal regions displayed higher Fos expression when the rats explored 

novel objects as compared to the discrimination condition (proximal: F1,41 = 8.52, p = 

0.006 and distal:  F1,41 = 25.8, p<0.001). The four-way interaction was not significant (F 

< 1). 

CA3 Fos 

The level of Fos expression in CA3 was not affected by the behavioural task the rats 

were given (F1,41 = 1.01, p = 0.32), their lesion status (F < 1), nor was there an 

interaction between these two factors (F < 1; Figure 6.9B). Differences were seen in the 
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different septotemporal levels of CA3 (F2,82 = 21.3, p < 0.001) but again, these were not 

altered by the behavioural task (F2,82 = 1.51, p = 0.23) or the presence of perirhinal 

cortex lesions (F < 1), with no interaction of these conditions (F2,82 = 2.40, p = 0.097).  

Dentate gyrus Fos 

The number of Fos-positive cells in the dentate gyrus was also unaffected by the 

behavioural condition (F < 1), the presence of perirhinal lesions (F1,41 = 1.41, p = 0.24), 

with again no interaction between these two conditions (F < 1; Figure 6.9C). 

Additionally, there was no difference in Fos counts between the septal and intermediate 

levels of the dentate gyrus (F < 1), nor were these levels differently modified by the 

behavioural task (F < 1), the presence of perirhinal cortex lesions (F<1). There was no 

interaction between these factors (F1,41 = 1.21, p = 0.28).  

Subicular Fos 

As with all other regions analysed within the hippocampal formation, there was no 

overall effect of perirhinal cortex lesions on the level of Fos expression in the subiculum 

(F1,41 = 1.63, p = 0.21; Figure 6.9D). There was, however, a behavioural effect as 

exploration of novel objects produced higher subicular Fos counts than discriminating 

novel from familiar objects (F1,41 = 8.98, p = 0.005; Figure 6.9D). This behavioural 

effect was not differently affected by perirhinal lesions (F < 1). Although the ventral 

subiculum had higher Fos counts than the dorsal subiculum (F1,41 = 73.4, p < 0.001), this 

difference was not affected by the behavioural task (F1,41 = 2.16, p = 0.15) or by lesion 

status (F < 1), with no three-way interaction (F < 1; Figure 6.9D). 

The distal subiculum had higher Fos counts than the proximal subiculum (F1,41 = 85.5, p 

< 0.001), but this difference was not affected by the behavioural condition (F < 1) or 

lesion status of the rats (F1,41= 2.37, p=0.13; Figure 6.9D). There was, however, a three-

way interaction (F1,41 = 4.62, p = 0.037). In the surgical control animals, the novel object 

exploration condition induced higher Fos counts than the discrimination condition in 

both the proximal (F1,41 = 10.7, p = 0.002) and distal (F1,41 = 6.03, p = 0.018) regions of 

the subiculum. While in the perirhinal lesion groups, higher Fos counts were associated 

with the proximal (F1,41 = 8.01, p = 0.007) but not the distal region (F < 1), indicating 

that perirhinal lesions affected the distal subiculum when rats were exploring novel 

objects. 
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Additionally, the proximal-distal dimension was differentially affected by Fos counts in 

the dorsal and ventral levels of the subiculum (F1,41 = 38.1, p < 0.001; Figure 6.9D). This 

interaction was modified by the behavioural condition (F1,41 = 5.88, p = 0.02) but not by 

the lesion status of the rats (F < 1). It was found that exploration of novel objects 

increased Fos expression over that induced by discriminating novel from familiar objects 

in proximal dorsal subiculum (F1,41 = 19.4, p < 0.001), distal dorsal subiculum (F1,41 = 

15.2, p < 0.001) and proximal ventral subiculum (F1,41 = 8.03, p = 0.007) but not distal 

ventral subiculum (F < 1). Thus, the distal ventral subiculum did not increase Fos 

expression when exposed to only novel objects regardless of lesion status. Finally, the 

four-way interaction was not significant (F < 1).    

 

Figure 6.9. Mean counts of Fos-positive cells in hippocampal formation. 

Graphs depict mean counts of Fos-positive cells in all four groups in septal (sept), intermediate (inter) 

and temporal (temp) regions of CA1 (A), CA3 (B), as well as septal and intermediate dentate gyrus 

(C) and dorsal and ventral subiculum (D). CA1 and subiculum are further divided into proximal 

(prox) and distal (dist) sub-regions.  Data are presented as means ±SEM. 
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6.3.4 Correlation tables 

Pearson product moment correlation coefficients were calculated between all regions of 

interest based on the raw Fos counts for both the rats in the novel-familiar discrimination 

condition (Table 6.3) and the novel-novel exploration condition (Table 6.4). These were 

calculated to give an indication of how the activity of the different brain regions was 

associated.  These tables of correlations present probability levels that are not corrected 

for multiple comparisons, as the individual correlations are of limited significance. More 

importantly, these same correlations provide the source data for structural equation 

modelling, in which the fit of the overall model helps to compensate for Type 1 errors in 

the individual correlations that comprise the model. Because of this, it is important that 

any model must conform to known patterns of anatomical connectivity between the 

regions of interest, i.e., the number of potential models is constrained. Interestingly, 

many more of the possible inter-area correlations reached an uncorrected significance 

level (p < 0.05) in the novel-familiar discrimination groups than the groups in the novel-

novel exploration condition. In the discrimination groups, approximately 69% (Sham 

Discrimination) and 38% (Peri Discrimination) of the possible inter-region correlations 

reached significance. In contrast, for the Sham Novel and Peri Novel groups 

approximately 13% of all of the possible correlations reached significance (p < 0.05). 
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Table 6.3. Inter-region correlations of Fos-positive cell counts in the novel-familiar discrimination condition. 

 

The top right diagonal matrix (darker grey) displays correlational data from the Sham Discrimination group while the bottom left diagonal matrix displays data from the Peri Discrimination group (lighter grey); the blank cells are due to 

regions not analysed in the rats with perirhinal lesions. The r-values are the Pearson coefficients. * p < 0.05, ** p < 0.01, *** p < 0.001, for two-tailed correlations (uncorrected for multiple comparisons – see main text). Sites included: area 

35 and area 36 of the perirhinal cortex (PRH); CA fields –distal (dist), intermediate (inter), proximal (prox), septal and temporal (temp); dentate gyrus (DG); lateral entorhinal cortex (LEC) – caudal (c), rostral (r); medial entorhinal cortex 

(MEC); nucleus reuniens of the thalamus (Reuniens); prelimbic cortex (PL); postrhinal cortex (POR); area Te2 (Te2); subiculum (Sub) –distal (dist), proximal (prox). 

Te2 Area 35 Area 36 PRH rLEC

rLEC 

layer II

rLEC 

layer III

rLEC 

layer 

V+VI POR cLEC

cLEC 

layer II

cLEC 

layer III

cLEC 

layer 

V+VI MEC

Prox 

Septal 

CA1

Dist 

Septal 

CA1

Septal 

CA3

Septal 

DG

Prox 

inter CA1

Dist Inter 

CA1

Inter 

CA3 Inter DG

Prox 

Temp 

CA1

Dist 

Temp 

CA1

Temp 

CA3

Dist 

Dorsal 

Sub

Prox 

Dorsal 

Sub

Dist 

Ventral 

Sub

Prox 

Ventral 

Sub PL Reuniens

r-value 0.415 .663* .593* 0.249 0.189 0.222 0.263 .733** 0.373 0.036 0.540 0.340 0.081 0.155 -0.030 -0.142 -0.233 -0.060 0.035 -0.248 0.055 0.260 0.477 0.266 0.152 -0.007 0.479 0.446 0.169 0.134 r-value

p-value 0.180 0.019 0.042 0.435 0.555 0.488 0.409 0.007 0.232 0.911 0.070 0.280 0.803 0.631 0.927 0.659 0.466 0.854 0.914 0.438 0.866 0.415 0.117 0.404 0.638 0.982 0.115 0.146 0.600 0.679 p-value

r-value .591* .908*** 0.129 0.070 0.078 0.243 .731** 0.249 0.072 0.324 0.239 -0.388 -0.032 -0.281 0.143 -0.242 -0.461 -0.144 -0.086 -0.008 0.209 0.229 -0.162 -0.156 -0.346 0.092 0.209 0.342 -0.045 r-value

p-value 0.043 <0.001 0.689 0.828 0.809 0.447 0.007 0.434 0.823 0.304 0.455 0.213 0.921 0.376 0.657 0.449 0.131 0.655 0.790 0.980 0.514 0.474 0.616 0.627 0.270 0.777 0.515 0.277 0.889 p-value

r-value .874*** 0.031 -0.002 0.050 0.026 .746** 0.484 0.217 0.510 0.537 0.094 0.149 -0.033 0.104 -0.333 -0.337 -0.258 -0.305 -0.225 0.022 0.369 0.015 0.159 -0.170 0.117 0.189 0.158 0.078 r-value

p-value <0.001 0.923 0.995 0.877 0.935 0.005 0.111 0.498 0.090 0.072 0.771 0.644 0.918 0.747 0.291 0.284 0.419 0.336 0.482 0.945 0.237 0.964 0.621 0.597 0.716 0.555 0.623 0.810 p-value

r-value 0.094 0.041 0.073 0.160 .827** 0.401 0.156 0.460 0.422 -0.185 0.058 -0.186 0.140 -0.318 -0.452 -0.220 -0.210 -0.121 0.138 0.329 -0.090 -0.012 -0.297 0.116 0.224 0.288 0.013 r-value

p-value 0.772 0.899 0.821 0.620 0.001 0.197 0.628 0.133 0.172 0.566 0.858 0.562 0.664 0.314 0.140 0.492 0.513 0.707 0.670 0.296 0.782 0.971 0.349 0.720 0.484 0.365 0.968 p-value

r-value .940*** .886*** .867*** 0.368 .677* 0.569 .617* .597* 0.497 0.465 0.442 0.568 0.405 0.252 0.491 -0.335 0.170 0.451 0.487 -0.218 -0.040 0.152 .604* 0.410 0.473 0.389 r-value

p-value <0.001 <0.001 <0.001 0.239 0.016 0.053 0.032 0.041 0.101 0.128 0.151 0.054 0.192 0.430 0.105 0.288 0.597 0.141 0.108 0.497 0.901 0.638 0.038 0.186 0.120 0.212 p-value

r-value .718** .867*** 0.270 .633* .607* 0.530 0.563 0.534 .612* 0.354 .723** 0.332 0.371 .648* -0.486 0.212 .596* 0.569 -0.027 -0.025 0.202 .636* 0.446 0.409 0.489 r-value

p-value 0.009 <0.001 0.396 0.027 0.036 0.076 0.057 0.074 0.034 0.259 0.008 0.292 0.235 0.023 0.109 0.508 0.041 0.054 0.933 0.938 0.529 0.026 0.146 0.187 0.106 p-value

r-value 0.566 0.322 .695* 0.454 .714** .598* 0.387 0.211 .639* 0.376 0.495 0.240 0.239 -0.134 0.136 0.283 0.457 -0.303 0.080 0.242 0.532 0.401 0.483 0.359 r-value

p-value 0.055 0.307 0.012 0.138 0.009 0.040 0.214 0.510 0.025 0.229 0.102 0.452 0.454 0.678 0.673 0.373 0.136 0.338 0.805 0.448 0.075 0.196 0.112 0.251 p-value

r-value 0.410 0.453 0.485 0.351 0.423 0.427 0.534 0.081 0.501 0.209 0.075 0.548 -0.340 0.137 0.403 0.290 -0.207 -0.246 -0.097 0.472 0.253 0.363 0.185 r-value

p-value 0.185 0.139 0.110 0.264 0.171 0.166 0.073 0.803 0.097 0.514 0.817 0.065 0.279 0.672 0.194 0.361 0.520 0.440 0.763 0.121 0.427 0.247 0.564 p-value

r-value 0.568 0.303 .642* 0.575 0.006 0.243 -0.071 0.075 -0.196 -0.330 -0.135 -0.314 -0.236 0.200 0.388 -0.096 -0.007 -0.129 0.136 0.090 .605* 0.291 r-value

p-value 0.054 0.339 0.024 0.051 0.986 0.446 0.826 0.817 0.543 0.295 0.676 0.321 0.460 0.533 0.213 0.766 0.983 0.689 0.673 0.781 0.037 0.358 p-value

r-value .771** .938*** .836** .638* 0.491 0.416 0.430 0.201 0.348 0.291 -0.518 0.181 0.330 .652* -0.179 0.117 0.264 0.324 0.300 0.424 0.531 r-value

p-value 0.003 <0.001 0.001 0.025 0.105 0.179 0.163 0.532 0.267 0.360 0.084 0.572 0.296 0.022 0.577 0.718 0.408 0.304 0.344 0.170 0.076 p-value

r-value .868** .579* 0.434 .602* 0.506 0.243 0.427 0.131 0.172 0.360 -0.574 0.293 0.203 0.353 -0.062 0.282 0.456 0.015 -0.020 0.226 0.474 r-value

p-value 0.002 0.048 0.159 0.038 0.093 0.446 0.166 0.685 0.593 0.251 0.051 0.355 0.527 0.261 0.847 0.375 0.136 0.962 0.952 0.480 0.119 p-value

r-value .845** .705* .774** 0.470 0.424 0.492 0.291 0.285 0.340 0.237 -0.334 0.208 0.274 .636* -0.164 0.057 0.218 0.370 0.350 0.428 0.459 r-value

p-value 0.004 0.034 0.003 0.123 0.169 0.104 0.358 0.369 0.279 0.457 0.288 0.516 0.389 0.026 0.612 0.861 0.496 0.236 0.264 0.165 0.133 p-value

r-value .850** 0.623 0.484 0.549 0.488 0.368 0.535 0.137 0.283 0.166 -0.427 -0.217 0.351 .648* -0.226 -0.091 -0.017 0.398 0.304 .579* 0.496 r-value

p-value 0.004 0.073 0.186 0.064 0.107 0.240 0.073 0.671 0.374 0.605 0.166 0.499 0.263 0.023 0.480 0.778 0.959 0.200 0.337 0.049 0.101 p-value

r-value .694* .683* 0.521 0.604 0.529 0.307 0.268 0.235 0.549 0.440 -0.446 0.191 0.065 0.257 -0.231 -0.059 0.088 0.208 0.106 -0.112 0.201 r-value

p-value 0.038 0.043 0.151 0.085 0.077 0.332 0.400 0.463 0.065 0.152 0.146 0.552 0.841 0.420 0.471 0.855 0.786 0.518 0.742 0.729 0.532 p-value

r-value -0.442 -0.160 -0.475 -0.377 -0.386 0.429 .656* 0.476 0.425 .749** -0.173 0.190 0.140 0.284 0.013 -0.360 0.088 0.207 -0.029 0.193 0.260 r-value

p-value 0.233 0.682 0.197 0.317 0.304 0.165 0.021 0.118 0.169 0.005 0.590 0.554 0.664 0.371 0.969 0.251 0.785 0.518 0.928 0.548 0.414 p-value

r-value -0.227 -0.111 -0.489 0.075 -0.151 .670* 0.406 .847** 0.378 0.336 0.332 0.192 -0.177 0.157 -0.197 -0.072 0.297 0.264 0.096 0.116 0.101 r-value

p-value 0.558 0.775 0.181 0.849 0.699 0.048 0.190 0.001 0.225 0.285 0.292 0.550 0.581 0.627 0.540 0.825 0.348 0.407 0.768 0.719 0.754 p-value

r-value -0.355 -0.226 -0.633 -0.053 -0.507 .741* 0.616 0.345 0.274 0.571 -0.282 0.062 0.468 0.492 0.031 -0.127 0.104 0.457 0.327 0.333 0.378 r-value

p-value 0.349 0.559 0.067 0.892 0.163 0.022 0.077 0.273 0.388 0.053 0.375 0.848 0.125 0.104 0.923 0.693 0.747 0.136 0.299 0.290 0.226 p-value

r-value -0.071 -0.232 -0.122 0.078 -0.540 0.392 0.287 0.655 0.378 0.478 0.535 0.303 -0.312 -0.167 -0.446 -0.487 0.003 0.083 -0.108 -0.004 -0.164 r-value

p-value 0.857 0.548 0.755 0.842 0.133 0.297 0.455 0.056 0.226 0.116 0.073 0.339 0.323 0.605 0.146 0.108 0.993 0.798 0.738 0.991 0.610 p-value

r-value -0.147 -0.056 -0.276 -0.012 -0.319 .784* 0.418 .806** .668* .684* -0.167 0.507 0.381 0.462 0.177 -0.118 0.346 0.414 0.382 -0.082 0.334 r-value

p-value 0.705 0.886 0.473 0.975 0.403 0.012 0.263 0.009 0.049 0.014 0.603 0.092 0.222 0.130 0.582 0.715 0.271 0.181 0.221 0.801 0.289 p-value

r-value 0.237 0.356 0.081 0.256 -0.224 0.497 0.627 0.501 0.431 0.373 -0.086 .672* 0.376 0.352 0.178 -0.294 0.232 0.498 0.345 -0.085 0.118 r-value

p-value 0.540 0.348 0.836 0.505 0.562 0.173 0.071 0.170 0.247 0.323 0.791 0.017 0.229 0.261 0.579 0.354 0.469 0.099 0.273 0.793 0.714 p-value

r-value .688* 0.530 .712* 0.455 0.203 -0.400 -0.471 -0.196 0.307 -0.121 0.205 0.085 -.674* -.624* -0.335 -0.487 -0.297 -0.255 -0.314 -0.283 -.710** r-value

p-value 0.041 0.142 0.031 0.218 0.600 0.285 0.200 0.613 0.422 0.757 0.596 0.793 0.016 0.030 0.287 0.109 0.348 0.423 0.320 0.372 0.010 p-value

r-value 0.490 0.353 0.465 0.382 0.016 0.110 -0.173 0.268 .698* 0.512 0.305 .771* 0.147 0.183 0.152 -0.011 0.328 0.299 0.387 -0.451 -0.170 r-value

p-value 0.181 0.352 0.207 0.310 0.966 0.778 0.655 0.486 0.037 0.159 0.425 0.015 0.649 0.569 0.636 0.974 0.298 0.346 0.213 0.141 0.597 p-value

r-value -0.123 0.051 -0.455 0.149 -0.104 .709* 0.570 .811** 0.289 .825** 0.374 -0.370 0.141 .847** 0.526 0.313 0.355 .703* .722** 0.443 .694* r-value

p-value 0.753 0.896 0.218 0.702 0.789 0.033 0.109 0.008 0.451 0.006 0.321 0.328 0.718 0.001 0.079 0.321 0.258 0.011 0.008 0.149 0.012 p-value

r-value 0.219 0.467 -0.147 0.366 0.243 0.610 .675* 0.564 0.038 0.547 0.621 -0.205 0.081 .824** 0.470 0.381 0.457 .743** .763** 0.455 .720** r-value

p-value 0.571 0.205 0.706 0.333 0.529 0.081 0.046 0.114 0.922 0.128 0.074 0.598 0.836 0.006 0.123 0.222 0.135 0.006 0.004 0.137 0.008 p-value

r-value 0.334 0.442 0.022 0.437 .714* 0.211 0.187 0.150 -0.212 0.332 -0.103 -0.101 0.146 0.557 0.637 .623* .637* 0.327 0.353 -0.001 0.439 r-value

p-value 0.380 0.234 0.954 0.240 0.031 0.586 0.630 0.701 0.585 0.383 0.793 0.797 0.709 0.120 0.065 0.030 0.026 0.299 0.260 0.997 0.153 p-value

r-value 0.394 0.332 -0.024 0.632 .707* -0.216 0.161 0.038 -0.187 -0.114 -0.118 0.130 0.060 0.189 0.356 .732* .739** 0.125 0.241 0.070 0.501 r-value

p-value 0.294 0.383 0.951 0.068 0.033 0.576 0.680 0.923 0.629 0.770 0.762 0.739 0.878 0.626 0.347 0.025 0.006 0.700 0.450 0.829 0.097 p-value

r-value 0.509 0.590 0.255 0.514 .862** 0.022 0.174 -0.129 -0.375 -0.035 0.030 0.105 0.089 0.217 0.545 .860** .799** 0.169 0.160 0.197 .634* r-value

p-value 0.162 0.095 0.507 0.157 0.003 0.954 0.654 0.740 0.320 0.929 0.938 0.787 0.821 0.575 0.129 0.003 0.010 0.599 0.620 0.539 0.027 p-value

r-value 0.066 -0.138 -0.066 0.323 -0.018 -0.329 0.286 -0.164 -0.247 -0.441 0.203 -0.228 -0.491 -0.115 0.033 -0.267 0.092 -0.051 .924*** 0.149 0.260 r-value

p-value 0.865 0.723 0.866 0.397 0.964 0.387 0.455 0.673 0.521 0.235 0.600 0.555 0.180 0.769 0.932 0.487 0.814 0.896 <0.001 0.643 0.414 p-value

r-value 0.043 -0.060 -0.372 0.444 -0.225 -0.110 0.281 0.502 0.226 0.107 0.297 -0.034 -0.053 0.409 0.293 -0.048 0.281 -0.159 0.526 0.010 0.215 r-value

p-value 0.913 0.878 0.324 0.232 0.560 0.778 0.464 0.168 0.559 0.784 0.438 0.931 0.893 0.275 0.445 0.902 0.464 0.682 0.146 0.976 0.503 p-value

r-value 0.375 0.578 0.206 0.284 0.594 -0.361 -0.108 -0.418 -.839** -0.525 -0.045 -0.111 -0.511 -0.057 0.299 0.292 0.327 0.444 0.320 0.139 .696* r-value

p-value 0.320 0.103 0.594 0.459 0.092 0.340 0.783 0.263 0.005 0.147 0.908 0.775 0.160 0.884 0.435 0.446 0.390 0.231 0.400 0.722 0.012 p-value

r-value -0.069 0.069 -0.428 0.238 0.156 0.402 0.465 0.485 -0.192 0.395 0.177 -0.487 -0.226 .822** .769* 0.626 0.409 0.439 0.266 0.468 0.333 r-value

p-value 0.860 0.861 0.250 0.538 0.688 0.283 0.207 0.186 0.621 0.293 0.649 0.184 0.559 0.007 0.015 0.071 0.274 0.237 0.490 0.204 0.381 p-value

Peri Novel Peri Novel
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Table 6.4. Inter-region correlations of Fos-positive cell counts in the novel-novel exploration condition. 

 

The top right diagonal matrix (darker grey) displays correlational data from the Sham Novel group while the bottom left diagonal matrix displays data from the Peri Novel group (lighter grey); the blank cells are due to regions not analysed 

in the rats with perirhinal lesions. The r-values are the Pearson coefficients. * p < 0.05, ** p < 0.01, *** p < 0.001, for two-tailed correlations (uncorrected for multiple comparisons – see main text). Sites included: area 35 and area 36 of the 

perirhinal cortex (PRH); CA fields –distal (dist), intermediate (inter), proximal (prox), septal and temporal (temp); dentate gyrus (DG); lateral entorhinal cortex (LEC) – caudal (c), rostral (r); medial entorhinal cortex (MEC); nucleus 

reuniens of the thalamus (Reuniens); prelimbic cortex (PL); postrhinal cortex (POR); area Te2 (Te2); subiculum (Sub) –distal (dist), proximal (prox). 

Te2 Area 35 Area 36 PRH rLEC
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V+VI POR cLEC

cLEC 

layer II

cLEC 

layer III

cLEC 

layer 

V+VI MEC
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septal 

CA1
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septal 

CA1
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CA3
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inter CA1
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CA1

Inter 
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CA1
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Temp 

CA1

Temp 

CA3

Dist 

Dorsal 

Sub

Prox 

Dorsal 

Sub

Dist 

Ventral 

Sub

Prox 

Ventral 

Sub PL Reuniens

r-value .783** .852*** .826** .819*** 0.380 .744** .896*** .749** .700* 0.371 0.499 .791** 0.522 .813** .734** .896*** .786** .873*** .883*** 0.370 .765** .796** .812** 0.540 .596* .628* 0.518 .700* .908*** .782** r-value

p-value 0.003 <0.001 0.001 <0.001 0.223 0.006 <0.001 0.005 0.011 0.235 0.099 0.002 0.082 0.001 0.007 <0.001 0.002 <0.001 <0.001 0.236 0.004 0.002 0.001 0.070 0.041 0.029 0.084 0.011 <0.001 0.003 p-value

r-value .914*** .988*** .890*** .587* .866*** .736** .788** .821** .599* .693* .763** 0.562 .836** .755** .636* 0.513 .670* .808** 0.093 .666* .779** .810** 0.272 .736** .680* 0.554 .776** .839** .642* r-value

p-value <0.001 <0.001 <0.001 0.045 <0.001 0.006 0.002 0.001 0.040 0.012 0.004 0.057 0.001 0.005 0.026 0.088 0.017 0.001 0.775 0.018 0.003 0.001 0.392 0.006 0.015 0.062 0.003 0.001 0.024 p-value

r-value .966*** .876*** 0.528 .846** .793** .876*** .820** 0.407 .663* .869*** .659* .812** .798** .726** .685* .701* .877*** 0.304 .813** .767** .776** 0.489 .713** .686* 0.497 .825** .917*** .688* r-value

p-value <0.001 <0.001 0.078 0.001 0.002 <0.001 0.001 0.189 0.019 <0.001 0.020 0.001 0.002 0.007 0.014 0.011 <0.001 0.337 0.001 0.004 0.003 0.107 0.009 0.014 0.100 0.001 <0.001 0.013 p-value

r-value .903*** .576* .877*** .773** .838** .838** 0.538 .696* .819** .610* .844** .787** .683* .589* .696* .852*** 0.175 .736** .790** .814** 0.360 .743** .697* 0.544 .811** .886*** .673* r-value

p-value <0.001 0.050 <0.001 0.003 0.001 0.001 0.071 0.012 0.001 0.035 0.001 0.002 0.014 0.044 0.012 <0.001 0.586 0.006 0.002 0.001 0.250 0.006 0.012 0.068 0.001 <0.001 0.017 p-value

r-value .757** .977*** .721** .753** .916*** .591* .857*** .816** .709** .695* .638* .709** 0.503 .729** .841** 0.123 .713** .856*** .896*** 0.482 .643* .629* .629* .797** .798** 0.476 r-value

p-value 0.004 <0.001 0.008 0.005 <0.001 0.043 <0.001 0.001 0.010 0.012 0.026 0.010 0.095 0.007 0.001 0.704 0.009 <0.001 <0.001 0.112 0.024 0.028 0.028 0.002 0.002 0.118 p-value

r-value .715** 0.112 0.487 .829** .749** .942*** 0.509 .727** 0.235 0.366 0.259 0.018 0.338 0.416 -0.104 0.287 .685* .584* 0.495 0.308 0.283 .588* .583* 0.385 0.135 r-value

p-value 0.009 0.729 0.108 0.001 0.005 <0.001 0.091 0.007 0.461 0.242 0.417 0.957 0.283 0.179 0.747 0.365 0.014 0.046 0.102 0.329 0.373 0.045 0.047 0.217 0.675 p-value

r-value .694* .720** .884*** 0.554 .839** .784** .639* .651* 0.557 .644* 0.437 .625* .807** 0.084 .702* .779** .862*** 0.403 .640* .601* 0.536 .742** .726** 0.392 r-value

p-value 0.012 0.008 <0.001 0.061 0.001 0.003 0.025 0.022 0.060 0.024 0.156 0.030 0.002 0.796 0.011 0.003 <0.001 0.194 0.025 0.039 0.072 0.006 0.007 0.207 p-value

r-value .650* 0.531 0.119 0.302 .732** 0.369 .826** .658* .853*** .821** .814** .856*** 0.334 .786** .602* .740** 0.263 .657* .688* 0.379 .622* .864*** .636* r-value

p-value 0.022 0.076 0.713 0.340 0.007 0.237 0.001 0.020 <0.001 0.001 0.001 <0.001 0.288 0.002 0.039 0.006 0.408 0.020 0.013 0.225 0.031 <0.001 0.026 p-value

r-value .835** 0.316 .640* .960*** .804** .800** .869*** .764** .640* .714** .922*** 0.508 .876*** .789** .752** .583* .761** .776** .626* .898*** .891*** .746** r-value

p-value 0.001 0.317 0.025 <0.001 0.002 0.002 <0.001 0.004 0.025 0.009 <0.001 0.091 <0.001 0.002 0.005 0.047 0.004 0.003 0.030 <0.001 <0.001 0.005 p-value

r-value .687* .941*** .867*** .854*** .640* .738** .596* 0.397 .638* .803** 0.082 .656* .862*** .843** 0.498 .720** .705* .700* .836** .743** 0.442 r-value

p-value 0.014 <0.001 <0.001 <0.001 0.025 0.006 0.041 0.202 0.026 0.002 0.800 0.021 <0.001 0.001 0.099 0.008 0.010 0.011 0.001 0.006 0.150 p-value

r-value .949*** .734** 0.290 0.340 0.300 0.398 0.067 -0.126 0.219 0.257 -0.463 -0.025 0.553 0.505 0.042 0.410 0.323 0.395 0.313 0.272 0.186 r-value

p-value <0.001 0.007 0.360 0.280 0.344 0.200 0.835 0.697 0.495 0.421 0.129 0.939 0.062 0.094 0.898 0.186 0.306 0.204 0.323 0.392 0.562 p-value

r-value .949*** .921*** .682* .798** 0.415 0.506 0.379 0.152 0.463 .600* -0.107 0.460 .789** .747** 0.463 0.530 0.494 .661* .717** 0.517 0.186 r-value

p-value <0.001 <0.001 0.015 0.002 0.180 0.093 0.225 0.638 0.130 0.039 0.741 0.132 0.002 0.005 0.130 0.076 0.102 0.019 0.009 0.086 0.563 p-value

r-value .728** 0.452 0.491 .857*** .767** .842** .827** .708* .762** .956*** 0.464 .914*** .783** .802** .580* .773** .813** .648* .903*** .905*** .636* r-value

p-value 0.007 0.140 0.105 <0.001 0.004 0.001 0.001 0.010 0.004 <0.001 0.129 <0.001 0.003 0.002 0.048 0.003 0.001 0.023 <0.001 <0.001 0.026 p-value

r-value .673* 0.490 0.453 .859*** 0.467 .684* .590* 0.444 .605* .727** 0.339 .696* .732** .659* .651* 0.564 .631* .748** .859*** .686* 0.360 r-value

p-value 0.017 0.106 0.139 <0.001 0.125 0.014 0.044 0.148 0.037 0.007 0.280 0.012 0.007 0.020 0.022 0.056 0.028 0.005 <0.001 0.014 0.251 p-value

r-value 0.537 0.373 0.368 .699* .636* .860*** .791** .742** .831** .878*** 0.308 .729** .740** .715** 0.298 .831** .807** 0.459 .691* .833** .739** r-value

p-value 0.072 0.233 0.240 0.011 0.026 <0.001 0.002 0.006 0.001 <0.001 0.330 0.007 0.006 0.009 0.347 0.001 0.001 0.133 0.013 0.001 0.006 p-value

r-value 0.465 0.444 0.333 0.486 0.501 .622* .689* .686* .721** .819** 0.334 .660* .671* .600* 0.350 .882*** .895*** 0.471 .712** .839** .695* r-value

p-value 0.128 0.149 0.290 0.109 0.097 0.031 0.013 0.014 0.008 0.001 0.289 0.020 0.017 0.039 0.265 <0.001 <0.001 0.122 0.009 0.001 0.012 p-value

r-value 0.388 0.244 0.126 .744** .779** .672* 0.509 .873*** .902*** .917*** .627* .883*** .723** .726** .640* 0.553 .632* 0.526 .712** .865*** .745** r-value

p-value 0.212 0.444 0.697 0.006 0.003 0.017 0.091 <0.001 <0.001 <0.001 0.029 <0.001 0.008 0.008 0.025 0.062 0.027 0.079 0.009 <0.001 0.005 p-value

r-value 0.108 0.001 -0.087 0.451 0.561 .727** .611* .711** .732** .768** 0.557 .791** 0.473 0.454 0.521 0.514 0.566 0.250 0.543 .778** .657* r-value

p-value 0.739 0.997 0.788 0.142 0.058 0.007 0.035 0.009 0.007 0.004 0.060 0.002 0.121 0.138 0.082 0.087 0.055 0.433 0.068 0.003 0.020 p-value

r-value 0.477 0.386 0.360 0.510 .583* .669* .689* 0.576 .745** .880*** 0.423 .749** .846** .817** 0.529 .617* .696* .687* .749** .840** .673* r-value

p-value 0.117 0.215 0.251 0.090 0.047 0.017 0.013 0.050 0.005 <0.001 0.170 0.005 0.001 0.001 0.077 0.032 0.012 0.014 0.005 0.001 0.017 p-value

r-value 0.404 0.383 0.278 0.431 0.508 .737** .702* .603* .732** .924*** 0.480 .928*** .832** .862*** 0.547 .773** .809** .634* .870*** .932*** .711** r-value

p-value 0.192 0.219 0.382 0.162 0.091 0.006 0.011 0.038 0.007 <0.001 0.114 <0.001 0.001 <0.001 0.065 0.003 0.001 0.027 <0.001 <0.001 0.010 p-value

r-value 0.448 0.469 0.274 0.529 0.555 0.521 .705* .698* .679* .819** .791** .633* 0.197 0.126 .631* 0.103 0.228 0.129 0.358 0.480 .604* r-value

p-value 0.144 0.124 0.388 0.077 0.061 0.082 0.010 0.012 0.015 0.001 0.002 0.027 0.540 0.696 0.028 0.750 0.476 0.691 0.253 0.114 0.038 p-value

r-value 0.269 0.323 0.132 0.329 0.447 .591* 0.471 .636* .701* .823** .907*** .838** .687* .737** .628* .576* .628* 0.568 .857*** .877*** .673* r-value

p-value 0.398 0.306 0.684 0.297 0.145 0.043 0.122 0.026 0.011 0.001 <0.001 0.001 0.014 0.006 0.029 0.050 0.029 0.054 <0.001 <0.001 0.016 p-value

r-value 0.302 0.195 0.112 0.507 .662* 0.551 0.463 .661* 0.530 .707* .780** 0.552 .714** .919*** .619* .577* .586* .833** .860*** .769** .616* r-value

p-value 0.340 0.544 0.730 0.092 0.019 0.063 0.130 0.019 0.076 0.010 0.003 0.063 0.009 <0.001 0.032 0.049 0.045 0.001 <0.001 0.003 0.033 p-value

r-value 0.445 0.274 0.210 .722** .813** .623* 0.521 .786** .637* .773** .765** .689* .715** .936*** 0.417 .620* .638* .820** .862*** .805** 0.543 r-value

p-value 0.147 0.389 0.513 0.008 0.001 0.031 0.082 0.002 0.026 0.003 0.004 0.013 0.009 <0.001 0.177 0.031 0.026 0.001 <0.001 0.002 0.068 p-value

r-value 0.271 0.327 0.134 0.306 .619* 0.511 0.405 0.514 0.548 .642* .748** 0.553 .783** .835** .745** 0.054 0.120 0.459 0.573 0.504 0.516 r-value

p-value 0.395 0.300 0.678 0.333 0.032 0.090 0.191 0.087 0.065 0.024 0.005 0.062 0.003 0.001 0.005 0.867 0.711 0.134 0.051 0.095 0.086 p-value

r-value 0.321 0.166 0.063 .695* .764** .761** 0.411 .760** .694* .604* .647* 0.562 .668* .791** .846** .764** .974*** 0.366 .607* .690* 0.418 r-value

p-value 0.308 0.607 0.845 0.012 0.004 0.004 0.185 0.004 0.012 0.037 0.023 0.057 0.018 0.002 0.001 0.004 <0.001 0.242 0.036 0.013 0.176 p-value

r-value 0.142 0.141 -0.005 0.291 0.408 .613* 0.399 0.442 .589* .695* .819** 0.563 .833** .813** .721** .873*** .803** 0.437 .646* .740** 0.448 r-value

p-value 0.661 0.663 0.987 0.359 0.188 0.034 0.198 0.150 0.044 0.012 0.001 0.057 0.001 0.001 0.008 <0.001 0.002 0.155 0.023 0.006 0.144 p-value

r-value 0.345 0.197 0.273 0.371 0.497 0.510 0.362 0.539 0.333 0.409 0.447 0.139 0.257 .633* 0.567 0.367 0.407 0.272 .859*** .626* 0.431 r-value

p-value 0.273 0.540 0.390 0.235 0.100 0.091 0.248 0.071 0.290 0.187 0.145 0.666 0.420 0.027 0.055 0.241 0.189 0.393 <0.001 0.029 0.162 p-value

r-value 0.208 -0.084 0.069 0.513 .596* 0.541 0.359 .605* .599* 0.542 0.473 0.211 0.273 .620* .662* 0.309 0.483 0.266 .800** .869*** .616* r-value

p-value 0.517 0.796 0.832 0.088 0.041 0.069 0.252 0.037 0.040 0.069 0.120 0.510 0.391 0.031 0.019 0.329 0.111 0.403 0.002 <0.001 0.033 p-value

r-value 0.302 0.098 0.205 0.435 0.533 0.277 0.294 0.459 0.308 .639* 0.501 0.357 0.389 .692* .666* 0.452 0.419 0.389 0.528 .668* .809** r-value

p-value 0.339 0.761 0.523 0.158 0.074 0.384 0.354 0.133 0.331 0.025 0.097 0.254 0.211 0.013 0.018 0.140 0.176 0.211 0.077 0.018 0.001 p-value

r-value -0.291 -0.193 -0.393 -0.072 0.122 0.063 -0.048 0.369 0.437 0.366 0.407 0.463 .681* 0.390 0.334 0.571 0.415 0.566 -0.154 0.001 0.328 r-value

p-value 0.360 0.549 0.206 0.823 0.706 0.847 0.881 0.238 0.155 0.242 0.189 0.129 0.015 0.209 0.289 0.052 0.180 0.055 0.633 0.999 0.298 p-value
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6.3.5 Structural equation modelling 

6.3.5.1 Refining previously derived novelty-related models - Sham animals only 

The first network models to be tested were intended to confirm, and anatomically refine, 

the network model derived in a preceding experiment of novel object recognition 

memory (described in Chapter 3). This previously derived model was centred on the 

rostral region of the parahippocampal cortex and the septal level of the hippocampus 

(Chapter 3), and so was initially tested in the Sham Discrimination group. It is known 

that the LEC preferentially projects to distal CA1 and proximal subiculum, as well as 

CA3 (Amaral, 1993; Witter, 1993); this information was used to improve the anatomical 

resolution of the model. 

Well-fitting network models involving area Te2, as described in Chapter 3, could not be 

derived and so perirhinal cortex was divided into its composite areas (areas 35 and 36). 

Aside from this modification, the network model as hypothesised (based on the model 

depicted in Figure 3.12E) had good indices of fit (χ2 
9 = 11.0, p = 0.27; CFI = 0.97; 

RMSEA = 0.14; Figure 6.10A). The resulting model that best fit the Fos activity data 

involved two parallel projections between area 36 of the perirhinal cortex and the rostral 

LEC; one direct pathway and the other indirect, via area 35. Thereafter, the route of 

functional activity through the hippocampus was as hypothesised; rostral LEC projected 

to septal CA3, which proceeded to the distal region of septal CA1 and, finally, onto the 

proximal region of the dorsal subiculum (Figure 6.10A). The same network model 

structure was also found to have good fit for group Sham Novel (χ2
9 = 4.71, p = 0.86; 

CFI = 1.0; RMSEA = 0.0; Figure 6.10B). Quantitatively, the model differed between the 

two behavioural tasks; in the Sham Discrimination model, all pathways were significant 

except that between area 36 and rostral LEC, whereas in the Sham Novel group only the 

path between area 36 and area 35, and the path from rostral LEC to CA3 reached 

significance level.  

The network models involving the complementary pattern in CA1 and subiculum were 

also tested; i.e., the parahippocampal to CA3 component of the model was held constant 

but subsequently, CA3 projected to the proximal region of septal CA1 and dorsal distal 

subiculum. This network model was found to have non-acceptable fit for group Sham 

Discrimination (χ2
9 = 18.3, p = 0.032; CFI = 0.87; RMSEA = 0.31) but retained 

acceptable for group Sham Novel (χ2 
9 = 5.85, p = 0.76; CFI = 1.0; RMSEA = 0.0).  
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Figure 6.10. Rostral parahippocampal – hippocampal interactions in Sham 

animals. 

Depictions of the optimal parahippocampal - hippocampal interactions derived from structural 

equation modelling for groups; Sham Discrimination (A) and Sham Novel (B).  The fit is noted under 

each model (CFI, comparative fit index; RMSEA, root mean square error of approximation). The 

strength of the causal influence of each path is denoted both by the thickness of the arrow and by the 

path coefficient next to that path. The number above each region is the proportion of its variance that 

can be explained by its inputs. Sites depicted: area 35 and area 36 of the perirhinal cortex, rostral 

lateral entorhinal cortex (rLEC), septal CA3, distal septal CA1 and dorsal proximal subiculum. * p < 

0.05; *** p < 0.001. 

6.3.5.2 Novel-familiar discrimination vs. novel-novel object exploration 

One of the main aims of this study was to investigate if the network for novel object 

recognition derived in Chapter 3 (Figure 3.12E) reflected the rats discriminating a novel 

from a familiar object, or if novel objects per se are sufficient to induce the same pattern 

of functional connectivity. SEM data described above indicated indirectly that the latter 

is true, as the data from both behavioural conditions fit the same network models.  

In order to more directly address this question, data from groups Sham Discrimination 

and Sham Novel were stacked onto the model depicted in Figure 6.10. This first 

involved constraining the path coefficients of all of the pathways that make up the model 

to have the same value in both groups (structural weights model). This constrained 

model was then compared to a model in which the path coefficients were free to vary. 

This comparison revealed an overall difference between the groups (χ2
6 Diff = 17.4; p = 
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0.008). The individual pathways that comprise the model were then allowed to vary 

individually in order to establish if this group difference was specific to a particular 

pathway. Allowing the path between area 36 and area 35 to vary significantly improved 

the fit of the model (χ2
1 Diff = 5.11, p = 0.024), as did unconstraining the path between 

distal septal CA1 and dorsal proximal subiculum (χ2
1 Diff = 8.11, p = 0.004). There were 

no other path differences between the two behavioural conditions (path between area 36 

and rostral LEC: χ2
1 Diff = 3.13, p = 0.077; all other paths χ2

1 Diff ≤ 2). Figure 6.10 

illustrates that these path differences are due to a stronger effective connection in these 

two pathways when the rats are discriminating novel from familiar objects. 

Unsurprisingly, as the model fits the data from both groups separately, when the data 

from the two groups were collapsed and tested on the same network model, it had 

acceptable fit (χ2
9 = 10.1, p = 0.35; CFI = 0.98; RMSEA = 0.07). This reinforces the 

assertion that the differences between these groups on this model are predominantly 

related to the strength of specific connections within the network rather than the overall 

structure. 

6.3.5.3 Testing the novel object network after perirhinal cortex lesions 

The network models tested above for the surgical control groups involved regions that 

could not be analysed in all four groups due to the perirhinal cortex lesions. Thus, the 

next set of models to be investigated began with the caudal region of the LEC, while 

keeping the hippocampal component as described. This produced a simple linear model 

that projected from caudal LEC to septal CA3, then to distal septal CA1 and finally onto 

the proximal region of the dorsal subiculum (Figure 6.11).  This model had good levels 

of fit for groups Peri Novel (χ2
3 = 2.37, p = 0.50; CFI = 1.0; RMSEA = 0.0), Sham Novel 

(χ2
3 = 1.33, p = 0.72; CFI = 1.0; RMSEA= 0.0) and Peri Discrimination (χ2

3 = 2.55, p = 

0.47; CFI = 1.0; RMSEA = 0.0). Group Sham Discrimination displayed a slightly 

elevated RMSEA, but all of the other goodness of fit indices indicated a well-fitting 

model (χ2
3 = 4.44, p = 0.21; CFI = 0.95; RMSEA = 0.21). As seen in Table 6.3, the Fos 

activity in all of the regions included in this model are highly inter-correlated; this 

creates redundancy of information that can then inflate the RMSEA (Tabachnick & 

Fidell, 2001). Surprisingly, this indicates that information flow through the 

hippocampus, elicited by novel object exploration is not affected by the loss of the 

perirhinal cortex.  This assertion will be tested more directly in a subsequent section. 

The models for each group were then tested with cortical layers II, III or V+VI of caudal 

LEC in place of the Fos counts from the whole caudal LEC. All other aspects of the 
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network were kept constant. It was found that all three of the cortical layers fit in place 

of the whole caudal LEC in groups Peri Discrimination and Sham Novel, while only 

cortical layers II and III fit in groups Sham Discrimination and Peri Novel (Table 6.5).    

 

 

Figure 6.11. Caudal parahippocampal – hippocampal interactions in all groups. 

Depictions of the caudal parahippocampal - hippocamapal interactions derived by structural equation 

modelling for groups; Peri Discrimination (A), Sham Discrimination (B), Peri Novel (C) and Sham 

Novel (D).  The fit is noted under each model (CFI, comparative fit index; RMSEA, root mean square 

error of approximation) and models with unacceptable fit are represented with a pale grey 

background. The strength of the causal influence of each path is denoted both by the thickness of the 

arrow and by the path coefficient next to that path. The number above each region is the proportion of 

its variance that can be explained by its inputs.  Sites depicted: caudal lateral entorhinal cortex 

(cLEC), septal CA3, distal septal CA1 and dorsal proximal subiculum. * p < 0.05; *** p < 0.001. 
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Table 6.5. Model fit when cortical layers II, III or V+VI replace whole cLEC counts 

in the models depicted in Figure 6.11. 

 
χ

2
-value df p-value CFI RMSEA 

Acceptable model 

fit 
Peri 

Discrimination             
Cortical layer II 2.83 3 0.42 1.0 0.0  
Cortical layer III 2.46 3 0.48 1.0 0.0  
Cortical layers 

V+VI 1.58 3 0.66 1.0 0.0  
Sham 

Discrimination             
Cortical layer II 3.01 3 0.38 0.99 0.04  
Cortical layer III 1.72 3 0.63 1.0 0.0  
Cortical layers 

V+VI 9.75 3 0.021 0.83 0.45 x 
Peri Novel             

Cortical layer II 1.90 3 0.59 1.0 0.0  
Cortical layer III 0.50 3 0.92 1.0 0.0  
Cortical layers 

V+VI 4.14 3 0.25 0.49 0.22 x 
Sham Novel             

Cortical layer II 2.62 3 0.45 1.0 0.0  
Cortical layer III 2.31 3 0.51 1.0 0.0  
Cortical layers 

V+VI 0.7 3 0.88 1.0 0.0  
CFI, comparative fit index; df, degrees of freedom; RMSEA, root mean square error of approximation 

 

A further refinement was made to the network which also generated well-fitting models. 

A feedback pathway from the dorsal proximal subiculum to rostral LEC was added to 

the network (Figure 6.12). This generated models of good fit for groups Sham 

Discrimination (χ2
2 = 0.85, p = 0.65; CFI = 1.0; RMSEA = 0.0) and Sham Novel (χ2

2 = 

0.79, p = 0.67; CFI = 1.0; RMSEA = 0.00). In group Peri Novel this modification 

produced a model of good fit (χ2
2 = 0.52, p = 0.77; CFI = 1.0; RMSEA = 0.0), but the 

direction of effect could not be inferred. Testing this network on data from group Peri 

Discrimination generated a model that was just outside the acceptable fit criteria (χ2
2 = 

2.49, p = 0.29; CFI = 0.86; RMSEA = 0.15).  
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The data presented thus far indicate that perirhinal cortex lesions had little impact on the 

parahippocampal-hippocampal interactions (Figure 6.12).  In order to test this 

preliminary conclusion directly, the data from all four groups were stacked on the 

network depicted in Figure 6.11. Allowing the coefficients of all paths to vary between 

all four groups did not significantly improve the fit over the structural weights model 

(χ2
9 Diff = 15.7, p = 0.074), indicating no overall difference between the four groups. 

Supporting this conclusion, the Fos data from all four groups were collapsed to create a 

single group on which the model could be tested. These combined data produced fit 

indices that just reached acceptable levels (χ2
3 = 5.74, p = 0.13; CFI = 0.92; RMSEA = 

0.14). 

Next, the Fos data were collapsed across the behavioural conditions to allow for 

comparison between lesion status regardless of behavioural task. There was no 

difference between the structural weights model and the model in which the weights of 

all paths were free to fluctuate (χ2
3 Diff = 2.61, p = 0.46) implying no functional 

difference between the rats with perirhinal lesions and their surgical controls.  To probe 

this effect further, and to ensure that collapsing across the behavioural condition did not 

mask an effect of the lesions, group comparisons were made within the behavioural 

conditions. Again, there was no overall improvement of fit when the paths were allowed 

to vary as compared to when they were constrained to be the same between groups Sham 

Novel and Peri Novel (χ2
3 Diff = 3.19, p = 0.37). This was also the case when groups 

Sham Discrimination and Peri Discrimination were compared (χ2
3 Diff = 5.66, p= 0.13). 

This indicates that lesions to the perirhinal cortex did not cause dysfunction in 

hippocampal activity related to the processing novel objects.  

It was found that the data from group Peri Discrimination did not fit the model depicted 

in Figure 6.12, which involved an additional path from the subiculum back to the caudal 

LEC. This would indicate that perirhinal cortex lesions alter the reciprocal relationship 

between the hippocampal formation and the LEC when rats are discriminating novel 

from familiar objects. However, when the data were collapsed across the behavioural 

condition there was no improvement in fit by allowing the paths to differ between the 

lesion and sham groups (χ2
4 Diff = 2.42, p = 0.66), nor was there a difference found when 

the lesion animals were stacked against their surgical control groups within each 

behavioural condition (Discrimination: χ2
4 Diff = 5.38, p = 0.25 and Novel: χ2

4 Diff = 4.12, 

p = 0.39). Thus, when tested directly, the pathway between subiculum and LEC was not 

affected by the perirhinal lesions. 
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Figure 6.12. Additional parahippocampal – hippocampal interactions in all groups. 

Depictions of the caudal parahippocampal - hippocampal interactions derived by structural equation 

modelling for groups; Peri Discrimination (A), Sham Discrimination (B), Peri Novel (C) and Sham 

Novel (D).  The fit is noted under each model (CFI, comparative fit index; RMSEA, root mean square 

error of approximation) and models with unacceptable fit are represented with a pale grey 

background. The strength of the causal influence of each path is denoted both by the thickness of the 

arrow and by the path coefficient next to that path. The number above each region is the proportion of 

its variance that can be explained by its inputs. Sites depicted: caudal lateral entorhinal cortex (cLEC), 

septal CA3 (sept CA3), distal septal CA1 (sept CA1) and dorsal proximal subiculum (prox sub). * p < 

0.05; *** p < 0.001. 
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6.3.5.4 Novel-familiar discrimination vs. novel-novel object exploration – all four 

groups 

The Fos data were subsequently collapsed across the lesion status of the groups to 

compare all rats in the novel-novel exploration condition with all rats in the novel-

familiar discrimination condition.  Allowing the weights of the paths to be different 

yielded a model of significantly better fit than the structural weights model (χ2
3 Diff = 

8.39, p = 0.039), indicating a difference between these behavioural conditions. When the 

paths were individually unconstrained, the only one to significantly improve fit was the 

path between distal septal CA1 and the dorsal proximal subiculum (χ2
1v= 7.35, p = 

0.007), there were no differences between the conditions in the other paths (χ2
1 Diff ≤ 1). 

Subsequent pairwise stacking between the groups on this network model revealed a 

difference between groups Sham Discrimination and Sham Novel (χ2
3 Diff = 8.38, p = 

0.039) that was again due to a difference in the path between distal septal CA1 and the 

dorsal proximal subiculum (χ2
1 Diff = 8.11, p = 0.004) and not in the other paths (χ2

1 Diff ≤ 

1). This difference, based on behavioural condition, appears to be driven by the surgical 

control animals, as there was no overall difference when groups Peri Discrimination and 

Peri Novel were stacked on the same model (χ2
3 Diff = 2.27, p = 0.52).  This suggests that 

there is a stronger connection between distal CA1 and proximal subiculum in the 

discrimination condition than in the novel-novel exploration condition in intact rats. The 

difference is not observed in rats with perirhinal lesions, indicating that perirhinal 

lesions may affect this connection. However, this implied lesion difference does not 

reach significance when Peri Discrimination and Sham Discrimination were compared 

directly in previous section. 

The same pattern of differences was found when the stacking procedure was undertaken 

for the model depicted in Figure 6.12; there was no differential effect of the additional 

pathway. Thus, the stronger effective connection between distal septal CA1 and the 

dorsal proximal subiculum seen in the novel-familiar discrimination condition is due to a 

strong functional connection between these regions only in the surgical control group 

(Sham Discrimination).  

6.3.5.5 Prelimbic cortex models – Sham animals only 

Additional models of good fit were derived that involved prelimbic cortex. Prelimbic 

cortex has been shown to be reciprocally connected to the deep cortical layers of the 

perirhinal cortex and LEC (Conde et al., 1995; Vertes, 2004; Jones & Witter, 2007), as 

well as to the temporal region of CA1 via the nucleus reuniens of the thalamus (Vertes et 
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al, 2007; Prasad & Chudasama, 2013). The first models were tested in the surgical 

control groups as the prelimbic– perirhinal link was of potential interest (Figure 6.13A, 

B).  

Several of the pathways that compose the optimal network models for these two groups 

were the same. Both networks involved a path between prelimbic cortex and nucleus 

reuniens of the thalamus with a further connection with distal temporal CA1, while 

caudal LEC also connected with the same region of CA1. An interesting dissociation 

was found in the pathways between prelimbic cortex and areas of the rhinal cortex.  The 

optimal model for the Sham Discrimination group involved a path between prelimbic 

cortex and area 36 of the perirhinal cortex (χ2
9 = 7.09, p = 0.63; CFI = 1.0; RMSEA = 

0.0; Figure 6.13A). In comparison, for the Sham Novel group, prelimbic cortex was 

functionally connected with area 35 of the perirhinal cortex and caudal LEC (χ2
8 = 7.75, 

p = 0.46; CFI = 1.0; RMSEA = 0.0; Figure 6.13B). Testing the Fos data from the Sham 

Discrimination group on the optimal network model for the Sham Novel group yielded a 

model of inadequate fit (χ2
8 = 13.9, p = 0.083; CFI = 0.92; RMSEA = 0.26; Figure 

6.13C). Poor indices of fit were also generated when the data from group Sham Novel 

were tested on the optimal model for Sham Discrimination (χ2
9 = 13.0, p = 0.16; CFI = 

0.82; RMSEA = 0.20; Figure 6.13D).  

These data suggest a functional connection between the prelimbic cortex and the more 

dorsal area 36 in the novel-familiar discrimination condition, while during novel object 

exploration the prelimbic cortex is functionally connected to the more ventral regions of 

area 35 and LEC (Figure 6.13A, B). When the two groups were stacked on these models, 

no differences emerged (analyses not shown). Subsequently, the inter-regional Fos 

correlations between prelimbic cortex and perirhinal cortex were compared directly 

between groups Sham Novel-Familiar discrimination and Sham Novel-Novel using 

Fisher's r-to-z transformation (Zar, 2010). The connection between prelimbic cortex and 

area 36 was significantly different between the two groups (z = 2.99, p = 0.003), with a 

stronger correlation in the Novel-Familiar discrimination group (Figure 6.13A).   

 



206 

 

Figure 6.13. Prelimbic cortex interactions in Sham animals only 

The upper panels are depictions of the optimal interactions between prelimbic cortex, the rhinal cortex 

and temporal hippocampus derived by structural equation modelling for the surgical control groups; 

Sham Discrimination (A), and Sham Novel (B). The middle panels illustrate the same network 

models tested with data from the other group: group Sham Discrimination tested on the optimal model 

for Sham Novel with poor fit (C) and Sham Novel tested on the optimal model for Sham 

Discrimination (D), also with poor fit. The lower panels depict the optimal models illustrated above 

with an additional feedback pathway in Sham Discrimination (E), and Sham Novel (F).The fit is 

noted under each model (CFI, comparative fit index; RMSEA, root mean square error of 

approximation) and models with unacceptable fit are represented with a pale grey background. The 

strength of the causal influence of each path is denoted both by the thickness of the arrow and by the 

path coefficient next to that path. The number above each region is the proportion of its variance that 

can be explained by its inputs. Sites depicted: Areas 35 and 36 of the perirhinal cortex, caudal lateral 

entorhinal cortex (cLEC), distal temporal CA1, prelimbic cortex (PL) and nucleus reuniens of the 

thalamus. * p < 0.05; ** p < 0.01; *** p < 0.001. 

 

It should be noted that when data from the two groups were stacked on these models, no 

improvement in fit was seen by allowing the groups to be different (Sham 

Discrimination optimal model: χ2
6 Diff = 10.6, p = 0.10; Sham Novel optimal model: χ2

7 

Diff = 4.57, p = 0.71). In addition, when the Fos data from both Sham Discrimination and 

Sham Novel were collapsed to form a single ‘Sham’ dataset and then tested on the 



207 

optimal network model for the Sham Discrimination group, depicted in Figure 6.13A, 

analysis yielded fit indices that were just within the acceptable limit (χ2
9 = 16.4, p = 

0.059; CFI = 0.91; RMSEA = 0.19). The same was true when the collapsed ‘Sham’ 

dataset was tested on the optimal network model for the Sham Novel group depicted in 

Figure 6.13B (χ2
8 = 9.35, p = 0.31; CFI = 0.98; RMSEA = 0.09). This is perhaps not 

surprising based on the overall similarity of the two models. Nonetheless, in both cases 

the fit indices are poorer when the data are collapsed. Also, as detailed above, when 

tested in isolation the Fos data from each group did not fit the optimal model for the 

other group, indicating a non-homogeneous dataset. 

Based on the optimal models for each group, two additional models of acceptable fit 

were also derived that involved an additional pathway between the distal region of 

temporal CA1 and the prelimbic cortex (Sham Discrimination: χ2
8 = 5.25, p = 0.73; CFI 

= 1.0; RMSEA = 0.0; Figure 6.13E and Sham Novel: χ2
7 = 7.57, p = 0.37; CFI = 0.97; 

RMSEA = 0.086; Figure 6.13F). Although this pathway appears quantitatively different 

in each group when the data were stacked on each network model, no group differences 

were uncovered (Sham Discrimination based model: χ2
7 Diff = 11.5, p = 0.12; Sham 

Novel based model: χ2
8 Diff = 12.5, p= 0.13). 

6.3.5.6 Prelimbic cortex models – all four groups 

The final set of models to be tested were a subset of those described in the previous 

section but involved brain regions that were present in all four animal groups. The 

perirhinal regions were eliminated creating a network model of two parallel pathways 

between prelimbic cortex and the distal region of temporal CA1; the first via the nucleus 

reuniens of the thalamus and the other by way of the caudal region of the LEC (Figure 

6.14). This network generated models of good fit for both groups in the novel-novel 

exploration condition (Peri Novel: χ2
2 = 0.55, p = 0.76; CFI = 1.0; RMSEA = 0.0; and 

Sham Novel: χ2
2 =1.81, p = 0.41; CFI = 1.0; RMSEA = 0.0; Figure 6.14C, D)  but poor 

fit for both groups in the novel-familiar discrimination condition (Peri Discrimination: 

χ2
2 = 5.49, p = 0.064; CFI = 0.57; RMSEA = 0.40; and Sham Discrimination: χ2

2 = 3.70, 

p = 0.16; CFI = 0.95; RMSEA = 0.29; Figure 6.14A, B).  

Additional evidence for behavioural condition differences was seen when the data from 

all four groups were collapsed to create a single group; these data were tested on the 

same network creating a model of poor fit (χ2
2 = 6.71, p = 0.035; CFI = 0.92; RMSEA = 

0.23) indicating differences among the datasets. However, when the structural weights 

of all of the paths in the model were constrained to have the same value for all four 
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groups the fit was no different from when the structural weights were free to differ 

between the groups (χ2
12 Diff = 5.49, p = 0.94). Subsequent pairwise stacking procedures 

yielded no differences in the network based on the behavioural condition when all rats in 

the novel-familiar discrimination condition were stacked against all rats in the novel-

novel exploration condition (χ2
4 Diff = 1.54, p = 0.82). Additionally, there were also no 

differences when surgical control rats in the novel-familiar discrimination condition 

were stacked against their counterparts in the novel-novel exploration condition (χ2
4 Diff = 

2.61, p = 0.63) or when perirhinal lesion rats in the novel-familiar discrimination 

condition were stacked against lesion rats from the novel-novel exploration condition 

(χ2
4 Diff < 1). Further, no lesion differences in this model were seen when all perirhinal 

lesions were stacked against surgical controls regardless of the behavioural condition 

(χ2
4 Diff = 2.27, p = 0.69). Finally, differences between rats with lesions and their surgical 

controls were not found in rats of the novel-familiar discrimination condition (χ2
4 Diff = 

2.24, p = 0.66) or rats in the novel-novel exploration condition (χ2
4 Diff < 1). 

 

Figure 6.14. Prelimbic cortex interactions in all groups. 

Depictions of the interactions between prelimbic cortex, lateral entorhinal cortex and temporal 

hippocampus derived by structural equation modelling for groups; Peri Discrimination (A), Sham 

Discrimination (B), Peri Novel (C) and Sham Novel (D). The fit is noted under each model (CFI, 

comparative fit index; RMSEA, root mean square error of approximation) and models with 

unacceptable fit are represented with a pale grey background. The strength of the causal influence of 

each path is denoted both by the thickness of the arrow and by the path coefficient next to that path. 

The number above each region is the proportion of its variance that can be explained by its inputs. 

Sites depicted: caudal lateral entorhinal cortex (cLEC), distal temporal CA1 prelimbic cortex (PL) and 

nucleus reuniens of the thalamus. * p < 0.05; ** p < 0.01; *** p < 0.001.  
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6.4 Discussion 

The present study had two broad sets of goals; the first set was in relation to preceding 

work on novelty induced c-fos activity data presented in this thesis. The second aim was 

to investigate the behavioural effects of lesions to the perirhinal cortex and the 

implications of these effects on models of perirhinal cortex function; the behavioural 

effects will be addressed first. 

6.4.1 False memories and interference due to perirhinal cortex lesions 

The overall objective of this section was to test specific predictions of the perceptual 

mnemonic feature conjunction model of perirhinal cortex function (Bussey et al., 2005; 

McTighe et al., 2010; Romberg et al., 2012). The first prediction to be tested was that 

rats with lesions to the perirhinal cortex display false memories by treating novel stimuli 

as if they are familiar; exhibited by reduced exploration times of novel objects in a 

spontaneous exploration task (McTighe et al., 2010; Romberg et al., 2012). The second 

prediction to be tested was that perirhinal lesions cause rats to be highly sensitive to 

interference, such that objects encountered in one trial cause subsequently encountered 

objects to appear familiar due to feature ambiguity (Cowell et al., 2010; McTighe et al., 

2010; Romberg et al., 2012). Feature ambiguity occurs when a particular feature is 

encountered multiple times on different stimuli; as the number of encountered objects 

increases the more likely the objects are to share overlapping features (Bussey et al., 

2005). While the present study did not intentionally present overlapping features, as 

each test involved 20 trials it seems inevitable that test objects shared some features.  As 

the test session progressed, objects should become increasingly familiar due to increased 

likelihood of feature ambiguity. This should manifest itself as a progressive reduction in 

exploration time dedicated to novel stimuli across the test session as they seem more 

familiar.  

It should be noted that the studies presenting evidence for false memories (McTighe et 

al., 2010; Romberg et al., 2012) involved exposing rats to pairs of objects in which both 

objects are either novel or both objects are familiar, so creating indirect tests of 

recognition memory. If perirhinal lesions cause false memories, evidence of a reduction 

in total exploration should also be seen in direct tests of object recognition memory and, 

as described above, this reduction in object exploration should become more marked 

with increased number of trials.  
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Rats in Experiment 1 were given a novel-familiar object discrimination task; lesions in 

the perirhinal cortex impaired the rats’ ability to successfully discriminate novel objects 

from familiar ones when measured across the whole test session. The lesions did not, 

however, abolish recognition memory completely. Discrimination performance in the 

group Peri Discrimination was above chance levels; a pattern that has been observed 

previously with the very short retention intervals employed in the current study 

(Albasser et al., 2011a; 2015). When the total exploration data from Experiment 1 are 

examined, there is no evidence that this recognition deficit is due to an overall reduction 

in exploration of objects. Inspection of the upper left panel of Figure 6.5 shows that the 

amount of exploration was remarkably similar for both groups along the progression of 

the 20 trials. Rats with lesions did not show a tendency to reduce exploration of objects, 

even though interference presumably increased. This null result contradicts the 

prediction that rats with perirhinal lesions should show an enhanced susceptibility to 

treat all objects as familiar, thereby reducing total exploration (McTighe et al., 2010).  

These predictions are specifically based around exploration of novel objects (McTighe et 

al., 2010; Romberg et al., 2012) and so mean exploration times from Experiment 1 were 

separated based on time dedicated to either novel or familiar objects. There was no 

overall main effect of perirhinal cortex lesions on mean exploration of either novel or 

familiar objects. These exploration data were divided into four blocks of five 

consecutive trials in order to examine if novel object exploration reduced as the test 

session progressed. The only reduction seen in novel object exploration due to perirhinal 

lesions was across trials 6-10. If this reduction was due to interference effects, it would 

be expected that the deficit would become progressively worse as the rats progressed 

through blocks, but this was not the case. 

As mentioned above, evidence for false memories comes from behavioural studies in 

which trials consist of  pairs of either novel or familiar objects rather than one of each 

(McTighe et al., 2010; Romberg et al., 2012). It could be argued that by pairing a novel 

with a familiar object they are placed in direct competition, as they cannot be explored 

simultaneously. Based on the fact that the mean amount of exploration per trial in the 

discrimination task was approximately six seconds, while the total amount of time 

available for exploration was one minute, this proposition seems unlikely. Nonetheless, 

this possibility was addressed in Experiment 2 by presenting only novel stimuli, thereby, 

removing time competition between the classes of objects. In this behavioural condition 

the rats were presented with 20 pairs of non-identical novel objects; by the end of the 
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test they had encountered 40 novel objects. However, even upon removal of object class 

competition, the results of Experiment 2 do not appear to support predictions relating to 

perirhinal lesions causing false memories or increased susceptibility to interference.   

In Experiment 2, the total amount of time rats spent exploring the novel objects over the 

whole test session was not different between the sham and lesion conditions, indicating 

that loss of the perirhinal cortex did not induce novel objects to be perceived as familiar. 

Additionally, there was no evidence of progressive interference effects caused by 

perirhinal lesions. When the data were divided into four blocks of five trials, exploration 

levels for the two groups were highly comparable. One shortcoming of the design of 

Experiment 2 was that a concurrent impairment in recognition memory was not 

demonstrated in the rats with perirhinal lesions. However, it has been shown previously 

that when rats with perirhinal lesions are exposed to either pairs of novel or pairs of 

familiar objects they exhibit exploration levels equivalent to their surgical controls, 

while displaying a simultaneous recognition deficit (Mumby et al., 2007; Albasser et al., 

2009, 2011a).  

Comparison of the total exploration times across Experiments 1 and 2 yielded further 

evidence of at least partially intact novelty detection in rats with perirhinal lesions. Both 

groups in the novel-novel exploration condition displayed equivalently higher 

exploration than the two groups in the discrimination condition. Interestingly, the mean 

exploration time in the novel-novel exploration condition was approximately 80% 

higher than that of the discrimination condition (see Figure 6.4), a condition in which 

only half the number of novel objects were encountered. Also, when the mean amount of 

exploration per novel object was compared, again no difference was observed between 

the rats with perirhinal lesions and their surgical controls in either behavioural condition. 

Further, if perirhinal lesions cause novel objects to appear familiar, the related reduction 

in exploration of novel objects should also be apparent in the sample phase of any test of 

object recognition, which is not the case (Ennaceur et al., 1996; Aggleton et al., 1997; 

Winters et al., 2004; Barker et al., 2007; Mumby et al., 2007; Bartko et al., 2007a, b; 

Albasser et al., 2009; McTighe et al., 2010; Barker et al., 2011). Romberg et al. (2012) 

suggested that the home-cage could act as a non-arousing low-interference environment 

prior to the sample phase. As such, performance on the sample phase is free from 

interference; however in the same study they used the home-cage as their “high-

interference” environment during the retention interval. This implies that a single 

stimulus presentation followed by time spent in a highly familiar but non-sensory 
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deprived environment is sufficient to cause significant interference. The results of 

Experiment 2 would appear to contradict this. 

In a set of experiments that sought to modify feature ambiguity, perirhinal cortex lesions 

did not impair rats ability to recognise novel objects under zero–delay conditions in the 

low feature-ambiguity conditions; such impairments were only seen when feature 

ambiguity between the test stimuli was intentionally high (Bartkto et al., 2007a,b). 

Similar results have been demonstrated in monkeys (Buckley et al, 2001). This could 

suggest that the objects used in the present study did not have sufficiently overlapping 

features and so did not induce interference. Yet, rats in the studies proposing evidence 

for feature ambiguity (Bartkto et al., 2007a,b), as well as the reports seemingly 

supporting false memories (McTighe et al., 2010; Romberg et al., 2012), following 

perirhinal lesions were presented with only two pairs of objects. Rats in the present 

study encountered 20 or 40 pairs of objects, making the absence of feature ambiguity 

unlikely. Particularly as it has been demonstrated that perirhinal lesions magnify 

impairment in visual discrimination tasks in monkeys when stimulus set size is increased 

(Eacott et al., 1994; Buckley & Gaffin, 1997). It should be noted that increasing object 

set size was not interpreted as inducing a lesion deficit per se; rather that an increase in 

the number of stimuli will increase feature ambiguity by chance overlap of stimulus 

features (Norman & Eacott, 2004; Bussey et al., 2005). Nevertheless, the main 

difference between the current study and those of McTighe et al., (2010) and Romberg 

et al., (2012), is the lack of a delay between sample and test phases. 

There is evidence in both monkeys and rats that the imposition of a delay exacerbates 

recognition memory deficits caused by perirhinal cortex lesions (Eacott et al., 1994; 

Mumby & Pinel; 1994; Buffalo et al., 1999, 2000; Mumby et al., 2007). Some have cited 

this as evidence that the perirhinal cortex has only mnemonic functions and does not 

participate in perception (Buffalo et al., 1999, 2000). However, proponents of the dual 

role for the perirhinal cortex in memory and perception suggest that perirhinal lesions 

induce a recognition deficit in conditions that do not involve a retention delay when the 

task is perceptually hard (Eacott et al., 1994; Murray & Richmond, 2001; Bussey & 

Saksida, 2007). That is, when feature ambiguity is intentionally high (Buckley et al, 

2001; Norman & Eacott, 2004; Bartko et al., 2007a). Thus, perhaps the sensitivity to 

interference that rats with perirhinal cortex lesions may show is more evident following 

a discrete intervening event, while the remaining perceptual processing is affected by 

this interference to a lesser degree. As discussed above, based on the number of stimuli 
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used in the present experiments, it seems unlikely that interference due to feature 

ambiguity would not have occurred at all. Nonetheless, the stimuli were not intentionally 

designed to have overlapping features. Also, the current rats did not have to retain 

attributes of a particular stimulus for more than a minute, nor was retention required 

beyond the test environment. Conceivably, only the perceptual properties of the loss of 

the perirhinal cortex were tested, and if the stimuli were not similar enough to induce 

immediate feature ambiguity, then it may be that they were less susceptible to 

misidentification. Perhaps the interference was not sufficient to cause an appreciable 

effect without the imposition of a delay, unless novel and familiar objects were placed in 

direct competition with one another. This is supported by the fact that the only 

behavioural impairment observed in the present study was that rats with perirhinal 

lesions discriminated novel from familiar objects less efficiently than their surgical 

controls. The suggestion of reduced interference without a delay is compatible with the 

finding that sensory deprivation during the retention interval restores performance 

(McTighe et al., 2010; Romberg et al., 2012). This interpretation would predict that rats 

with perirhinal lesions exposed to multiple objects during a sample phase would be 

significantly more impaired at detecting novelty following a delay than those exposed to 

only one object. An impairment would also be expected without a delay if the test 

objects were perceptually very similar. It should be noted, however, that recognition 

impairments due to perirhinal lesions have been observed after just one trial in the bow-

tie maze, when interference is least (Albasser et al., 2015). 

To summarise the behavioural results, rats with perirhinal lesions were impaired on 

novel-familiar object discriminations but exhibited normal levels of exploration for 

novel stimuli when they were not placed in direct competition with familiar objects. This 

suggests that there are mechanisms beyond the perirhinal cortex that indicate perceptual 

novelty at short retention intervals, but which are not as efficient or specific as that 

provided by the perirhinal cortex. As a consequence this information cannot guide the 

rat when directly choosing between a novel and a familiar object (Zhu, et al, 1995; 

Brown & Aggleton, 2001). If delay dependent interference does indeed occur then based 

on previous studies, this novelty signal would be predicted to be fast, transient and/or 

susceptible to this delayed interference (McTighe et al., 2010; Romberg et al., 2012); 

however, the results presented here suggest this novelty signal it is relatively stable and 

not susceptible to interference within a single session. There are potential regions 

beyond the perirhinal cortex in which this signal could be generated; one example is the 

association cortex, Te2 (Buffalo et al., 1999, 2000; Albasser et al., 2011a; Ho et al., 
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2011). If novelty could be considered an intrinsic feature of a particular stimulus, as the 

perirhinal cortex is proposed to function in object identification (Bussey et al., 2005), 

then perhaps loss of the perirhinal cortex prevents attribution of the novelty signal to the 

correct object. This is consistent with theories relating pattern separation to the 

perirhinal cortex (Saksida et al., 2006, 2007; Bartko et al., 2007a). 

6.4.2 Fos imaging 

The initial Fos-positive cell count comparisons were made individually for the novel-

familiar discrimination condition and the novel-novel exploration condition to assess the 

functional impact, on regional neuronal activity, of lesions to the perirhinal cortex 

following these behavioural tasks.  No differences were found in Fos-related activity in 

any of the regions examined when rats were tested on a 20 trial novel object 

discrimination task. Similarly, in the novel-novel exploration condition, there was only 

one lesion difference that reached significance level (discussed below).  

One potential short-coming of this study is that the two behavioural tasks were 

completed by two separate cohorts of rats. The behavioural experiments described here 

were designed very carefully to match each other as closely as possible. Testing took 

place in the same maze, in the same room with many of the same test objects, by the 

same experimenter and they were placed in the same dark room both before and after 

testing. Additionally, both cohorts of animals were approximately three months old and 

had very similar weight ranges at the time of the lesion surgeries. The only distinction 

was the differences in prior learning opportunities between the cohorts. The rats from 

Experiment 1 were pre-trained in the bow-tie maze and were tested once on a novel 

object discrimination task before they received surgery. The rats of Experiment 2 were 

experimentally naive before surgery and were pre-trained in the bow-tie maze following 

recovery. Both groups of rats received object based tests in the bow-tie maze prior to the 

ones described here, but the rats of Experiment 1 took part in a greater amount of testing 

with the addition of a water-maze experiment. It is difficult to predict the impact of these 

prior learning experiences on the Fos-related activity between these animal groups.  

Importantly, the rats were similar ages (11-12 months) when behavioural testing for the 

current experiment began and neither experimental group had undergone a bow-tie maze 

experiment in approximately three months before that point.  Furthermore, there were no 

differences seen in the level of Fos expression between groups Sham Discrimination and 

Sham Novel in auditory or motor cortices (areas where a null result might be expected if 



215 

 

the behavioural tasks are well matched) and thus, comparisons were made between the 

regional Fos counts of these two behavioural conditions.  

With respect to the foregoing c-fos imaging experiments presented in this thesis, the 

current investigation had five main objectives. These were to: 1) assess the differences 

in Fos related activity associated with novel-familiar object discrimination as compared 

with novel-novel exploration; 2) further examine the functional effects of perirhinal 

cortex lesions on the hippocampus; 3) validate and anatomically refine the novelty 

related network derived in Chapter 3; 4) test if the previously derived networks of 

novelty related activity are generated by the rats actively discriminating between a novel 

and a familiar object or simply by the presence of novel stimuli in the environment; and 

5) determine the extent to which the hippocampal component of this previously derived 

network depends on the integrity of the perirhinal cortex.  These aims will be discussed 

in turn.  

6.4.2.1 Activity induced Fos changes between novel-novel object exploration and 

novel-familiar object discrimination  

Overall, the numbers of Fos-positive cells in the rostral parahippocampal cortex were 

highly comparable between rats in the novel-familiar discrimination condition and those 

exploring only novel objects. A relative increase in Fos expression in the perirhinal 

cortex of the Sham Novel group compared to Sham Discrimination was not observed. 

This might have been predicted based on the fact that Sham Novel rats encountered 

twice as many novel objects as those in the discrimination condition (Zhu et al., 1995b, 

1996; Wan et al., 1999; Aggleton & Brown, 2005; Albasser at al., 2010b). But the 

present results are consistent with those of Chapter 3, in which a perirhinal Fos increase 

was not observed when rats were presented with two familiar objects as compared to one 

novel and one familiar object. The only difference detected in the rostral 

parahippocampal cortex was the region of LEC that lies adjacent to the perirhinal cortex. 

A relative increase in Fos expression was seen in the rats that discriminated novel from 

familiar objects. Correspondingly, a more caudal region of LEC exhibited a similar 

result; both groups that were discriminating novel from familiar had higher Fos counts in 

the entorhinal cortex than those exploring only novel objects regardless of their lesion 

status. This result suggests a greater level of activation along the whole rostral-caudal 

extent of the LEC when animals were discriminating novel from familiar stimuli. 

Lesions to the LEC have been shown to spare novel object recognition while 

impairments were seen when the task demands required object information to be 
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associated with context or location (Wilson et al., 2013a,b). Although not absolutely 

required to complete the task, perhaps the greater demands of the novel-familiar object 

discrimination task engaged the associative properties of the LEC beyond that when the 

task demands were essentially null in the novel-novel exploration condition. Further, this 

effect of higher Fos-related activity in the LEC in rats performing recognition 

discriminations when compared to experiencing just novel objects was specific to 

cortical layers II and III (not V+VI). This effect could arise if the perirhinal cortex 

signals both novelty and familiarity as the familiarity responsive neurons could account 

for this increased activation of the lateral entorhinal cortex. This interpretation would be 

more consistent with the perirhinal lesion effects on behaviour and c-fos than the 

supposition that it signals only novelty (Brown & Aggleton, 2001). 

In chapter 3, the switch between different modes of hippocampal engagement, based on 

the behavioural task, was proposed to occur in the connection between the perirhinal 

cortex and LEC. The increased Fos-activity observed here upon discrimination could be 

a reflection of that. The superficial cortical layers of the LEC are known to preferentially 

project to the hippocampus while the deeper layers predominantly receive hippocampal 

output (Steward & Scoville, 1976; Amaral, 1993; Tamamaki & Nojyo, 1995). At both 

analysed levels of the LEC, discrimination was associated with increases in Fos-related 

activity in the superficial layers compared to novel object exploration. No differences 

were seen in the deeper layers. This suggests active discrimination between novel and 

familiar stimuli leads to greater activity in the hippocampal input layers, providing 

evidence that discrimination occurs in the cortex prior to its involvement in altering 

hippocampal activity patterns even in the absence of the perirhinal cortex.  

The main difference observed in the CA1 subfield of the hippocampus was an increase 

in Fos expression in the novel-novel object exploration condition when compared to 

discrimination condition at the temporal level of CA1 in both the proximal and distal 

regions. However, when CA1 was assessed in its entirety, (i.e., septotemporal level of 

the hippocampus was ignored), rats exploring novel objects had significantly higher Fos 

counts in the distal region of CA1 (but not the proximal region) than those 

discriminating novel from familiar objects. This pattern potentially reflects the 

preference of LEC projections to terminate in distal CA1 (Amaral, 1993; Witter, 1993).  

There were no Fos differences observed in CA3 or the dentate gyrus of the hippocampus 

in either of the behavioural conditions. As seen in CA1, novel-novel object exploration 

was associated with higher Fos counts in the subiculum when compared to rats in the 
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novel-familiar discrimination condition, except for the ventral distal subicular region in 

which the level of Fos-expression was comparable across the two behavioural 

conditions. 

Taken together, these results indicate a situation in which LEC efferents to the 

hippocampus show increased activity when rats are discriminating novel from familiar 

stimuli while higher levels of activity in CA1 and the subiculum are associated with 

novel-novel object exploration. This further suggests that discrimination occurs in the 

parahippocampal cortex while enhanced hippocampal processing occurs when stimuli 

are novel; potentially reflecting enhanced learning about attributes associated with novel 

stimuli (Diana et al., 2007). 

6.4.2.2 Functional effects of perirhinal cortex lesions  

As outlined in the introduction, several models of medial temporal lobe function imply 

that the perirhinal cortex has a significant impact on hippocampal processing (Aggleton 

& Brown, 1999, 2006; Fernández & Tendolkar, 2006; Bussey & Saksida, 2007; Diana et 

al., 2007; Knierim et al., 2014). Thus, Fos-related activity in the hippocampus was 

analysed to assess the effects of such lesions. Despite these predictions, the present study 

provided surprisingly limited evidence for hippocampal dysfunction induced by loss of 

the perirhinal cortex.  No lesion differences were seen in CA1, CA3 or the dentate gyrus 

of the hippocampus at any level analysed. The only lesion difference observed was a 

reduction in Fos-related activity in the distal region of the subiculum (ignoring the 

dorsal-ventral dimension) in rats with perirhinal lesions when they were exploring 

novel-novel objects rather than discriminating novel from familiar. This replicated the 

lesion difference obtained when Fos related activity was analysed separately for the two 

experiments. The perirhinal cortex is reciprocally connected to the subiculum, but 

preferentially targets the proximal rather than the distal region (Witter el al., 2000; 

Burwell & Agster 2008); thus it seems unlikely that this deficit is due to direct 

deafferentation. Additionally, it is difficult to explain why this should affect activity 

during novel-novel object exploration rather than novel-familiar discrimination. Besides 

this anomalous result, the Fos-imaging results presented here are similar to those of 

Chapter 5; perirhinal cortex lesions did not cause wide scale dysfunction in the medial 

temporal lobe. This result also echoes the results of Chapter 3 in which hippocampal 

lesions were seen to produce only very restricted effects on Fos expression in the 

parahippocampal cortex. It should be noted that it has been previously demonstrated that 

this Fos-imaging technique is sensitive to regional functional changes following lesions, 
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even in remote regions not directly connected to the lesion site (Vann et al., 2000; 

Jenkins et al., 2002, 2004; Albasser et al., 2007). 

Lesions to the perirhinal cortex did however cause a reduction in Fos-related activity 

specifically in cortical layer III of the caudal region of the LEC regardless of the 

behavioural condition. This replicates, albeit in a more specific manner, a result seen in 

Chapter 5. In the novel context based experiment described in Chapter 5 a reduction in 

Fos expression was observed in the whole caudal region of LEC of rats with lesions to 

the perirhinal cortex upon exploration of a novel context. This previous lesion deficit in 

lateral entorhinal Fos expression was interpreted as a deafferentation due to loss of 

perirhinal inputs (Burwell & Amaral, 1998b); this is also likely to be the case here as the 

perirhinal projections preferentially terminate in layers II and III of the LEC (Burwell & 

Amaral, 1998a). Why cortical layer II should be spared in the present study is unclear 

but it is interesting to note that the connection between lateral entorhinal cortical layer 

III and CA1 is the proposed route for familiarity related information (Chapter 3). This 

type of familiarity information would not be required by the rats in the novel-novel 

exploration condition but could be useful to rats of the novel-familiar discrimination 

condition, in which a discrimination deficit was seen. 

6.4.2.3 Validation and anatomical refinement of a previously derived novelty 

related network 

Using structural equation modelling on c-fos data generated from animals engaged in a 

novel object recognition task, it was demonstrated that novel object recognition recruited 

the pathway from LEC (cortical layer II or III) to hippocampal field CA3 and, thence, to 

CA1 (Chapter 3, Albasser et al., 2010b).  The first network model to be tested in the 

present study was intended to both validate and anatomically refine the network model 

described for novel object recognition memory in Chapter 3. Thus, this initial analysis 

involved data from group Sham Discrimination as the behavioural test they received was 

a replication of that given to group Sham Novel in Chapter 3 (although it should be 

noted that the rats in the current experiment received only a single test session, rather 

than 12 prior training sessions in Chapter 3). The models derived in the previous 

experiment highlighted a role for the connections between the LEC and the 

hippocampus in this type of task (although this was not a task requirement).  Moreover, 

it is known that the hippocampal afferent projections from the LEC preferentially 

terminate in the region close to the border between CA1 and subiculum; namely distal 

CA1 and proximal subiculum (Figure 6.3; Amaral, 1993; Witter, 1993).  As such, the 
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aim was to test if the information flow through the hippocampus followed this path, 

further strengthening both the anatomical resolution of the network models as well as the 

plausibility of this functional pathway by testing that it adheres to well-established 

connections.  

Network models involving area Te2 (as described in Chapter 3) did not yield models of 

high fit for either group. Te2 is proposed to function in visual perception (Buffalo et al., 

1999, 2000). Functional activity differences could be due to the differences in prior 

exposure to the test environment and, perhaps more importantly, to several sets of 

objects in the days leading up to the final test. The present group received only a single 

test while for rats of the previous experiment the test was preceded by several training 

sessions although they were only tested once on the final day. 

Nevertheless, elimination of Te2 from the models created an opportunity to divide the 

perirhinal cortex into its constituent parts (area 35 and area 36) while still adhering to the 

ratio of at least two subjects for every region specified in a model (Bollen & Long, 

1992). The optimal network model involved parallel projections from area 36 to the 

rostral region of the LEC, one direct pathway and the other indirect; via area 35. 

Thereafter, the route of functional activity through the hippocampus was as 

hypothesised; rostral LEC projected to septal CA3 which proceeded to the distal region 

of septal CA1 and finally onto the proximal region of the dorsal subiculum (Figure 6.9). 

Thus the aim to replicate and anatomically refine the novelty related model was largely 

accomplished.  

6.4.2.4 Comparison of functional networks for novel-novel object exploration and 

novel-familiar object discrimination 

The next aim was to test if the same network model would also fit the Fos data from a 

group of rats that were exposed only to novel objects rather than to one novel and one 

familiar object per trial; this was found to be the case (Figure 6.10). The same network 

model had good fit for Fos data derived from the Sham Novel group. A direct 

comparison between the network models of the two groups indicated a quantitative 

difference in the path strength between area 36 and area 35 as well as the one between 

distal septal CA1 and dorsal proximal subiculum. Both of these paths had a stronger 

effective connection in the Sham Discrimination group. Based on the role of the 

perirhinal cortex in object discrimination (Mumby & Pinel, 1994; Brown & Aggleton, 

2001; Bartko et al., 2007a, b; Albasser et al., 2009, 2015) greater functional connectivity 

between its composite regions during discrimination is unsurprising. What remains 
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unclear is the significance of the connection between septal CA1 and dorsal proximal 

subiculum in this condition. 

Interestingly, the path from the rostral region of LEC to septal CA3 was significant in 

both groups Sham Discrimination and Sham Novel (Figure 6.9). This is notable as the 

major distinction between network models for the novel and familiar conditions (from 

Chapters 3 and 4) is the inclusion of CA3 in the novelty related models. This suggests 

that the pattern of functional connectivity observed in Chapter 3 was due to the presence 

of novel objects in the environment rather than reflecting a choice between novel and 

familiar objects. Although, as discussed in a previous section, novel-familiar object 

discrimination was associated with greater Fos activity levels in the LEC than when 

animals did not have to make a choice between classes of objects. Taken together, this 

suggests that object class can define functional network structure but task demands can 

alter the strength or quality of the connections within the network. 

6.4.2.5 Comparison of functional networks with and without the perirhinal cortex 

The network model described above involved regions that could not be analysed in all 

four groups due to the perirhinal cortex lesions. Thus, in order to test if the perirhinal 

lesions altered hippocampal processing, network models consisting of regions that could 

be analysed in all four groups were compared. In order to avoid any inadvertent 

neurotoxin induced damage, the models began in a more caudal region of the LEC, 

while the hippocampal component remained the same. This generated a simple linear 

feedforward model that projected from caudal LEC to septal CA3, then on to distal 

septal CA1 and, finally, onto the proximal region of the dorsal subiculum (Figure 6.11).  

This network model had good fit for all groups except Sham Discrimination; the only 

index of fit that caused this model to be rejected was an elevated RMSEA, all other 

indices were well within acceptable range.  This is probably a reflection of the fact that 

all three pathways in the model were highly significant, potentially creating redundancy 

of information in the network. When the network models for each group were directly 

compared they were not statistically different.  This provided initial indications that the 

lesions did not cause significant functional differences. 

To investigate this further, Fos data were collapsed across the behavioural conditions so 

the data from all the rats with perirhinal lesions was directly compared with the data 

from all of their surgical controls using a stacking procedure. This analysis did not 

reveal any lesion differences. Additional pairwise comparisons between the lesion and 

sham groups within each condition (i.e. Peri Discrimination vs. Sham Discrimination 
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and Peri Novel vs. Sham Novel) also revealed no lesion differences. Together, this all 

suggests that loss of the perirhinal cortex does not significantly impact on hippocampal 

function. This is surprising as object related information ostensibly reaches the 

hippocampus from the perirhinal cortex (Aggleton & Brown, 1999, 2006; Fernández & 

Tendolkar, 2006; Bussey & Saksida, 2007; Diana et al., 2007). However, perhaps the 

persistent novelty signal that is evident from the behavioural data can also activate the 

hippocampus at short retention intervals upon removal of the perirhinal cortex. 

Additionally, the hippocampus is not required to perform object discrimination tasks 

(Aggleton et al., 1986; Winters et al., 2004; Forwood et al., 2005; O’Brien et al., 2006; 

Chapter 3), whereas, object-in-place tasks are known to be dependent on both the 

perirhinal cortex and the hippocampus (Aggleton et al., 1986; Brown & Aggleton, 2001; 

Warburton & Brown, 2010; Barker & Warburton, 2011b) and so loss of the perirhinal 

cortex may induce differences in hippocampal activity under those conditions. 

In combination with Chapter 3, this study provides evidence of a double dissociation: 

perirhinal cortex lesions do not cause impairment in hippocampal processing and 

hippocampal lesions do not cause dysfunction in perirhinal activity when rats are 

engaged in a novel object discrimination task. 

6.4.2.6 An aside 

Additional evidence that the presence of novel stimuli, rather than novel-familiar 

discrimination, governs the structure of the processing network comes from the network 

models that do not involve the perirhinal cortex.  Pairwise comparisons between the 

groups duplicated the only condition difference described above; there was a stronger 

effective connection between septal CA1 and dorsal proximal subiculum in the Sham 

Discrimination group than in the other groups. As a further means of comparison with 

the results of Chapter 3, the models for each group were tested with Fos counts from 

cortical layers II or III of the caudal LEC in place of the counts from the whole region, 

while all other aspects of the network were kept constant. It was found that either of 

these cortical layers fit in place of the whole region in all four groups – as was observed 

for the group performing a novel object discrimination task in Figure 3.12F. Indeed, 

although group Sham Discrimination had an elevated RMSEA when the whole region 

Fos count was included in the network model, all indices of fit were well within 

acceptable limits when these superficial cortical layers replaced whole caudal LEC.  

Overall, these results provide further evidence that the pattern of hippocampal 
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engagement seen previously is due to the presence of novel objects in the rats’ 

environment, rather than discriminating novel from familiar objects. 

6.4.2.7 Prelimbic cortex models 

Lesion studies have demonstrated that although the rodent medial prefrontal cortex is 

not required for object discrimination, tested by delayed-nonmatching to sample or 

spontaneous novel object exploration paradigms, it is necessary for object associative 

learning (Poucet, 1989; Shaw & Aggleton, 1993; Ennaceur at al., 1996; Mitchell & 

Laiacona, 1998; Cross et al., 2013). Not only is it a requirement for object-in-place 

learning and temporal order recognition memory, crossed hemisphere lesion studies 

have shown that these tasks specifically require an intact connection between the 

perirhinal cortex and medial prefrontal cortex (Hannesson et al., 2004b; Barker et al., 

2007). Additionally, it is known to have a role in cognitive control tasks; including 

attentional processing, strategy shifting and reversal learning tasks as well as working 

memory tasks (Birrell & Brown, 2000; Heidbreder & Groenewegen, 2003; Vertes, 

2006). Due to the different task demands of the two behavioural conditions in the 

present study, differential involvement of the medial prefrontal cortex was a possibility. 

Based on crossed-lesion/disconnection studies (Hannesson et al., 2004b; Barker et al., 

2007), the connections between medial prefrontal and perirhinal cortices are of 

particular interest. The prelimbic cortex, a sub-region of the medial prefrontal cortex, 

has been shown to project directly to the deep cortical layers of the perirhinal cortex and 

LEC, and so this region was analysed for activity related Fos expression (Vertes, 2004; 

Jones & Witter, 2007). Also, prelimbic cortex is connected to the temporal region of 

CA1 (rather than septal hippocampus, used in the preceding models) via nucleus 

reuniens of the thalamus (Vertes et al, 2007; Prasad & Chudasama, 2013).  

Dissociable optimal network models were derived for the two Sham groups; both 

networks involved a path from prelimbic cortex to nucleus reuniens of the thalamus with 

a further projection onto the distal region of temporal CA1. The caudal region of LEC 

also projected to the distal temporal CA1. An interesting condition difference was found 

in the pathways between prelimbic cortex and areas of the rhinal cortex; when rats were 

discriminating novel from familiar objects the optimal network model contained a path 

from prelimbic cortex to area 36 of the perirhinal cortex. Whereas, when rats were 

exploring novel objects, the prelimbic cortex was functionally connected to area 35 of 

the perirhinal cortex and caudal LEC.  
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Additional evidence for a condition difference came from the models derived for all four 

groups. These models could not include regions of the rostral parahippocampal cortex 

but involved two parallel pathways from the prelimbic cortex to the distal region of 

temporal CA1; the first via nucleus reuniens of the thalamus and the other by way of the 

caudal region of the LEC (Figure 6.13). This network model had good fit when the rats 

were only exploring novel objects but poor fit when the rats were discriminating novel 

from familiar objects. This further highlights the apparent difference in the way in which 

the prelimbic cortex interacts with the rhinal cortex in the two behavioural conditions. In 

the novel-novel exploration condition, the presence of the perirhinal cortex was not 

necessary to generate models of good fit involving prelimbic cortex. In contrast, well-

fitting models involving prelimbic cortex could not be found in the Sham Discrimination 

groups without the presence of perirhinal cortex and, as such, no plausible models of 

good fit could be derived involving the prelimbic cortex in the Peri Discrimination group 

at all.  This suggests a functional dissociation; prelimbic cortex is functionally connected 

to area 36 of the perirhinal cortex when the task involves a choice between different 

classes of objects, i.e., in the discrimination condition. Further to this, the connection 

between prelimbic cortex and area 36 was significantly different between the two groups 

with a stronger correlation in the novel-familiar discrimination group. This result seems 

counterintuitive as the crossed-lesion studies demonstrated that the connection between 

prelimbic and perirhinal cortices is not required for novel object recognition (Hannesson 

et al., 2004b; Barker et al., 2007). However, the current discrimination task is based on 

spontaneous exploration, the rats would presumably be spontaneously acquiring 

associative information (Dix & Aggleton, 1999). Also, the discrimination condition 

arguably requires greater cognitive control than simple exploration of novel objects. 

6.4.3 Summary 

These experiments have demonstrated that rats with perirhinal lesions do not display 

false memories with the short retention delays employed here. Additionally, they are not 

more susceptible to interference effects created by a relatively large number of test 

stimuli, at least when presented in a single session. Further, perirhinal cortex lesions 

cause only minor dysfunctions to hippocampal c-fos activity related to the processing of 

novel objects. Finally, stimulus novelty is sufficient to initiate previously observed 

interactions between the LEC, CA3, CA1 and the subiculum (with or without the 

presence of the perirhinal cortex) but task demands alter the strength of specific 

connections within the network, as well as the involvement of the prelimbic cortex.  
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7 General Discussion 

7.1 Overview 

Various models have been proposed to account for the way in which regions of the 

medial temporal lobe interact to support recognition memory (Squire & Zola-Morgan, 

1991; Brown & Aggleton, 2001; Fernández & Tendolkar, 2006; Diana et al., 2007). An 

overarching aim of the experiments presented in this thesis was to test the functional 

interdependence of regions within the medial temporal lobe (specifically the perirhinal 

cortex and hippocampus) for supporting recognition memory. A previous experiment 

indicated that behavioural tasks involving either, novel and familiar, or, just familiar 

objects generated different modes of hippocampal-parahippocampal interactions 

(Albasser et al., 2010b). Following on from this, further aims of the present work were 

to confirm and anatomically refine these network models of regional activity and, 

subsequently, assess if they are disrupted by lesions to the perirhinal cortex or 

hippocampus. 

The main findings both confirm and extend this previous work by demonstrating that the 

network structure of hippocampal-parahippocampal interactions is defined by the class 

of the stimulus, i.e., whether it is novel or familiar.  Further, the strength of the specific 

connections within these networks, as well as additional regional involvement are 

modified by task demands. Surprisingly, these object processing networks, defined by 

object class, are on the whole robust to removal of either the perirhinal cortex or 

hippocampus. In this final chapter, the recurrent patterns of results observed in several of 

the experiments presented in this thesis will be considered and some of their 

implications discussed. 

7.2 A network for novel objects with a nested network for familiar 

objects 

The network analyses carried out in all of the experiments presented in this thesis on 

intact rats converge on the idea that the novelty or familiarity of a stimulus alters 

network dynamics and defines patterns of parahippocampal-hippocampal interactions. 

Novel objects generated an integrated pattern of Fos-related activity from the perirhinal 

cortex to the lateral entorhinal cortex, which subsequently recruited CA3 (the perforant 

pathway), and then CA1 (Chapters 3 & 6).  In contrast, familiar objects were associated 



225 

 

with the more direct route from the lateral entorhinal cortex to CA1 (the 

temporoammonic pathway; Chapters 3 & 4). This notion is supported by previous IEG 

imaging studies that modulated the novelty or familiarly of stimulus sets (Poirier et al., 

2008; Albasser et al., 2010b). The functional and anatomical evidence for each of the 

steps in these networks will be discussed here. 

The differential patterns of hippocampal subfield recruitment for novel compared to 

familiar objects imply a functional switch that occurs in the parahippocampal region. In 

Chapter 3, a network difference was observed specifically in the connection between 

area 35 of the perirhinal cortex and the lateral entorhinal cortex based on the novelty or 

familiarity of the presented objects. This indicates that information from the perirhinal 

cortex can influence subsequent network activity, specifically in the lateral entorhinal 

cortex.  

The next processing step in the models is from the lateral entorhinal cortex to the 

hippocampus. Of particular relevance is the fact that entorhinal cortex layer III projects 

to CA1, while layer II projects to the dentate gyrus and CA3 (Steward & Scoville, 1976; 

Insausti et al., 1997). Based on this anatomical information, it was predicted that 

perirhinal novelty signals, relating to objects, would bias processing towards entorhinal 

layer II and, so layer II activity would be associated with the novel object network 

models. It was further expected that familiarity signals would produce a bias towards 

entorhinal layer III and so layer III activity should be associated with the familiar object 

model. This laminar analysis revealed further evidence for the role of the 

temporoammonic pathway in familiarity processing. Lateral entorhinal cortical layer III 

generated a model of good fit for familiar object processing, while layers II and V+VI 

(combined) generated poorly fitting models (Chapter 3). The result that both cortical 

layers II or III consistently produced models of good fit for novel object processing was 

a more unanticipated finding (Chapters 3 & 6).  This result may indicate that rather than 

object class inducing a dichotomy between these routes into the hippocampus, the 

situation is one in which information relating to novel stimuli accesses the hippocampus 

via both the perforant and temporoammonic pathways. This notion echoes a mechanism 

recently demonstrated in an electrophysiological study in rats. It was found that 

simultaneous activation of CA1 pyramidal neurons by inputs originating in both CA3 

and cortical layer III of the entorhinal cortex was necessary and sufficient to induce the 

formation of new place fields and contextual feature selectivity (Bittner et al., 2015).  
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Based on the importance of entorhinal cortical layers II and III in the present models for 

novel and familiar object processing, it is worth noting that inputs from across the depth 

of perirhinal cortex converge on these superficial entorhinal layers (Burwell & Amaral, 

1998a,b). This fact, along with the object class differences observed in the pathway 

between area 35 and lateral entorhinal cortex, described above, provide a means by 

which novelty/familiarity detection in the perirhinal cortex can have a downstream 

impact on hippocampal processing (via the superficial layers of the lateral entorhinal 

cortex). This notion is central to the gatekeeper hypothesis of perirhinal function 

(Fernandez & Tendulkar, 2006). The assumption here is that parahippocampal and 

hippocampal regions work together but in sequentially different ways. The perirhinal 

cortex is proposed to process stimulus identity and, thereby, novelty and familiarity 

(Brown & Aggleton, 2001; Cowell et al., 2010). Hippocampal contributions are thought 

to more closely reflect additional information and, thereby, additional learning such as 

the context, location, relationship to other stimuli in the environment, or temporal 

information associated with the target object. Evidence to support this notion comes 

from crossed-lesion studies, which demonstrate that the perirhinal cortex and the 

hippocampus must be part of an intact functional circuit to ensure that associated 

information, such as its location, is automatically acquired for a given object, i.e., 

‘object-in-place’ information (Barker et al., 2007; Warburton & Brown, 2010; Barker & 

Warburton, 2011). The present results extend the gatekeeper model by indicating that 

novel stimuli are more likely to engage CA3 processing. This engagement could lead to 

the aforementioned enhanced learning. 

In addition to anatomically refining the novelty and familiarity related networks with 

respect to the inputs from the entorhinal cortex into the hippocampus, a further aim of 

the experiment presented in Chapter 6 was to improve resolution along the proximal-

distal axis of the hippocampus. The lateral entorhinal cortex has a stronger projection to 

distal CA1 and proximal subiculum, while the medial entorhinal cortex preferentially 

projects to proximal CA1 and distal subiculum (Amaral, 1993; Witter, 1993). The 

network models derived for novel object processing in Chapter 6, revealed that those 

with best fit corresponded to the expected proximal-distal connectivity patterns within 

CA1 and subiculum.  Thus, the results support the idea of a bias towards object-based 

processing in distal CA1 and proximal subiculum, which potentially contrasts with more 

spatial-based processing in proximal CA1 and distal subiculum (Aggleton 2012; 

Ranganath & Ritchey, 2012; Knierim et al., 2014). Recent studies have demonstrated 

that CA3 also displays functional heterogeneity along its proximal-distal axis (Lee et al., 
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2015; Lu et al., 2015); consequently, further work is required to integrate this dimension 

into the proposed network models. 

Other pathways that may also be involved in the mechanism of differentially engaging 

hippocampal subfields include the direct hippocampal projections from the perirhinal 

cortex, which preferentially target CA1 and to a lesser extent, the subiculum (Furtak et 

al., 2007). There are also hippocampal projections that can feedback to parahippocampal 

regions and these could further bias network activity (Aggleton, 2012).  Such dynamic 

interactions between the perirhinal cortex and the hippocampus have been highlighted in 

human fMRI and EEG studies, which point to partial divisions of function across these 

same structures that relate to the recognition and recollection of associated information 

(Staresina & Davachi, 2008; Staresina et al., 2012; Staresina et al., 2013). These 

mechanisms, along with that proposed above have the potential to function in an 

interactive and dynamic manner, defined by the task demands, in order to support a 

range of cognitive tasks. 

It should also be noted that, while there are regions that did not fit into the network 

models, the absolute level of Fos related activity often did not change between the 

behavioural groups. This is interpreted here as indicating that they are not involved in 

the functional network in question, as their activity is not predicted by, nor can it be used 

to predict, the activity of subsequent regions in the model.  

7.2.1 Support for differential processing of novel and familiar stimuli 

The prediction of additional hippocampal subfield recruitment induced by stimulus 

novelty is supported by selective lesion studies of the dentate gyrus and CA3 (Gilbert et 

al., 2001; Lee et al., 2005; Hunsaker et al., 2007, 2008; Langston et al., 2010) as well as 

c-fos activation studies that demonstrate the activation and engagement of these 

particular subfields by novel spatial configurations (Jenkins et al., 2004; Poirier et al, 

2008). Of particular relevance is the finding that lesions to CA3, but not dentate gyrus or 

CA1, disrupted learning of object-place and odour-place paired associate tasks (Gilbert 

& Kesner, 2003), in addition to the fact that CA3 inactivation disrupts visual novelty 

detection (Hunsaker et al., 2007). In contrast, both lesion studies (Gilbert et al., 2001; 

Hoge & Kesner, 2007; Kesner et al., 2010) and c-fos expression studies (Amin et al., 

2006) have highlighted the importance of CA1 for processing the temporal properties of 

a stimulus, a function that is likely to be especially pertinent for distinguishing familiar 

stimuli. Indeed, CA1 lesions impaired object recency discriminations that were spared 
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by CA3 lesions (Hoge & Kesner, 2007). These dissociations match the pattern of data 

derived from structural equation modelling of the present Fos-related activation. 

Further compelling evidence comes from a study that temporarily inactivated the 

projections from CA3 to CA1, but left the entorhinal cortex layer III to CA1 projection 

intact in a transgenic mouse model. This manipulation disrupted learning about novel 

contexts but not familiar ones in a contextual fear conditioning paradigm (Nakashiba et 

al., 2008). This provides evidence that learning about novel stimuli requires intact 

projections from CA3 to CA1. The same study also reported that inactivating CA3 led to 

increased firing rates in CA1, but only in a novel context. The authors suggested that 

CA3 may also function to maintain appropriate levels of network activity while the 

animal is experiencing novelty (Nakashiba et al., 2008). In a complementary study, the 

projections from entorhinal cortex layer III to CA1 were reversibly disrupted in another 

transgenic mouse model and found to disrupt temporal association memory (Suh et al., 

2011).  

The significance of a mechanism in which novel stimuli generate greater hippocampal 

engagement is suggested by reference to learning theory. An influential assumption is 

that novel stimuli, which have uncertain consequences, attract more attention and 

enhanced rates of learning about their associated properties than familiar stimuli (Pearce 

& Hall, 1980; Wagner, 1981). A recent human fMRI study demonstrated that while 

hippocampal activity was associated with the temporal properties of objects learned in a 

sequence, perirhinal cortex activity was associated with the objects themselves (Hsieh et 

al, 2014). Further, electrophysiological recordings in the rodent hippocampus found that 

hippocampal neurons did not specifically encode a stimulus but they were able to 

monitor the development of stimulus associations, including stimulus context, location, 

and related reward value during the course of a learning session (Komorowski et al., 

2009; McKenzie et al., 2014).  

An alternative, or perhaps complementary, notion is that reduced integration of 

hippocampal subfield activity on encountering a familiar stimulus could allow the 

network to remain in a state of readiness to engage with and process a novel event. 

Similar arguments have been made to explain the repetition suppression effect seen in 

neurons of the inferotemporal cortex in response to familiar visual stimuli (Meyer et al., 

2014). This approach could allow an animal to rapidly detect novel variations in the 

environment, an efficient mechanism such as this could be particularly important when 

these changes are subtle or occur quickly. 
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The importance of novelty in relation to learning is further reinforced by the subjective 

experience that incidental, insignificant details will subsequently be remembered if they 

occur in close temporal proximity to a surprising event. This neuropsychological process 

of novelty enhanced memory has been proceduralized in rats. A target location in a 

delayed matching-to-place task is remembered for significantly longer if, 30 minutes 

after the sample session, the rat is placed in a novel context for five minutes (Wang et 

al., 2010). The plausibility of the underlying neural mechanisms were corroborated by 

electrophysiological recordings in slice preparations; weak, followed by strong electrical 

stimulation in slice recordings generated longer lasting long term potentiation (Wang et 

al., 2010). This procedure has been extended to show that other forms of novelty also 

induce memory persistence of unrelated events (Salvetti et al., 2014).  

It should be noted that the suggestion here is not that the hippocampus is required for all 

types of recognition memory, particularly familiarity–based memory. However, whether 

to recollect or to simply be familiar with a particular stimulus is not a conscious choice, 

and although the evidence suggests that these processes are dissociable, under normal 

circumstances these two processes could occur simultaneously. The models proposed 

here provide a framework within which this can occur, while keeping the redundancy of 

information low. Of potential relevance is a study in which hippocampal lesions led rats 

to forget objects they had been familiar with prior to surgery, but were unimpaired in 

learning about new objects (Gaskin et al., 2003). This could indicate that under normal 

circumstances, the hippocampus and adjacent cortex cooperate to support recognition 

memory but the perirhinal cortex can do this in isolation if necessary based on the more 

simple familiarity–based mechanism. 

7.2.2 Inclusion of the dentate gyrus in models 

Although the dentate gyrus was a component of the previously identified network model 

derived for novel object processing (depicted in Figure 1.10; Albasser et al., 2010b) it 

could not be included in any well-fitting network models related to novel object 

processing in the current work (Chapters 3 & 6). That is not to say the proposal here is 

that the dentate gyrus does not participate in the processing of attributes relating to novel 

objects. Indeed, of the five groups of rats with an intact hippocampus, that were engaged 

in exploring novel objects (Group Sham Novel from Chapter 3; Groups Peri 

Discrimination, Sham Discrimination, Peri Novel and Sham novel from Chapter 6), 

three of these groups had significant inter-regional correlations between the dentate 

gyrus and CA3 (Tables 3.4, 6.3). These strong correlations create mathematical 
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redundancy of information in the models, which can increase the RMSEA fit index 

leading to a model to be eliminated (Tabachnick & Fidell, 2001). In fact, the three 

groups in which this correlation was significant were Group Sham Novel (r= 0.79; 

p=0.007) from Chapter 3 and groups Peri Discrimination (r= 0.71; p=0.009) and Sham 

Discrimination (r=0.87; p<0.001) from Chapter 6. All three of these groups were 

engaged in discriminating novel from familiar objects. Thus, the connection between 

these regions may be of particular importance when objects of different classes are 

placed in competition.  

Indeed the dentate gyrus and its role in pattern separation during encoding (Gilbert et al., 

2001; Leutgeb et al., 2007; Clelland et al., 2009; Schimdt et al., 2012; Hunsaker & 

Kesner, 2013) could be readily integrated into the model of medial temporal lobe 

interactions postulated here. Pattern separation is a computational process by which 

inputs into a system are distributed onto a sparse network, allowing for the creation of 

divergent patterns of activity, even if the inputs are similar. Pattern separation in the 

dentate gyrus is thought to be achieved by perforant path inputs from entorhinal layer II 

being distributed throughout the dentate gyrus, generating random, distinctive 

representations that markedly reduce the likelihood of similar representations for 

different events (Leutgeb et al., 2007; Hunsaker & Kesner, 2013). This process is likely 

to be particularly important when processing novel stimuli in order to disambiguate 

similar features and determine their unique attributes for associative learning. This 

further emphasises the role of the perforant pathway when processing stimulus novelty.  

A recent electrophysiological recording study demonstrated that the activity of both the 

dentate gyrus and CA3 tracked changes in the local environment (Neunuebel & Knierim 

2014). Dentate activity patterns were markedly altered by relatively small changes in 

environmental cues that could not be predicted specifically by activity changes in the 

entorhinal input, thereby, generating distinct neuronal representations; putative pattern 

separation processing (Hunsaker & Kesner, 2013; Neunuebel et al., 2013; Neunuebel & 

Knierim 2014). Additionally, CA3 was shown to be involved in pattern completion 

processing (Neunuebel & Knierim 2014). Pattern completion involves integrating sparse 

cues to reactivate known representations (Hunsaker & Kesner, 2013) and so it would 

seem that pattern completion should be more closely linked with familiar stimuli. 

However, even more recent work has indicated that CA3 displays functional 

heterogeneity along its proximal-distal axis; the proximal region is suggested to be 

involved in pattern separation, while the distal region and CA2 are involved in pattern 
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completion (Lee et al., 2015; Lu et al., 2015). Based on this, perhaps proximal CA3 

activity drove the involvement of CA3 in the current models of novel object processing. 

Additional work will be required to answer this question. 

7.3 Testing interdependence of the hippocampus and perirhinal 

cortex  

One of the main aims of the work presented in this thesis was to test the functional 

interdependence of the hippocampus and perirhinal cortex at multiple levels; 

behaviourally, as well as at the level of regional activation and systems interactions. In 

this section these will be discussed in turn. 

7.3.1 Behavioural evidence for interdependence 

The findings of Chapter 3 corroborate the many previous studies that have found no 

effect of hippocampal lesions on object recognition memory (Aggleton et al., 1986; 

Murray & Mishkin, 1998; Glenn & Mumby, 1996; Forwood et al., 2005; Albasser et al., 

2012).  This result, based on rats in the novel condition (groups HPC Novel and Sham 

Novel), provides further support for dual-process accounts of recognition memory 

(Brown & Aggleton, 2001; Yonelinas, 2002). More surprising was the absence of a 

lesion effect in the familiar condition, as the hippocampus has been shown to support 

temporal associations (Fortin et al., 2002; Hoge & Kesner, 2007; Barker & Warburton, 

2011; DeVito & Eichenbaum, 2011; Albasser et al., 2012). In a previous study of the 

same design, intact rats in the familiar condition either could not perform this 

discrimination (Albasser et al., 2010b), although, more in line with the results of Chapter 

3 is another study in which rats in the familiar condition discriminated above chance 

levels but remained significantly inferior to the novel group (Albasser et al., 2013b). 

Nonetheless, this lack of a behavioural deficit was unexpected for rats with hippocampal 

lesions (group HPC Familiar). 

The main difference between the animals of the present study and those of the previous 

ones is that in the present study they were around a year old when carrying out the task, 

whereas in the previous studies they were approximately three to four months old 

(Albasser et al., 2010b, Albasser et al., 2013b). Thus, an alternative explanation is that as 

the current rats were older, they found it more difficult to remember the objects that 

were seen in previous sessions. Memory deficits have been found in aged rodents, 

particularly in acquiring new information and remembering items following a long 

retention delay (Dunnett et al., 1988; Aggleton et al., 1989; Wyss et al., 2000). It is 
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possible that the hippocampal lesion rats were not in fact highly familiar with the set of 

objects as they were intended to be; although as indexed by the difference in the D1 

scores and by structural equation modelling of the regional c-fos data the objects were 

not treated as completely novel. This result may indicate that the parahippocampal 

cortex can solve simple recency problems under certain circumstances, a view supported 

by the significant correlations between perirhinal Fos counts and recency performance in 

group HPC Familiar (Chapter 3), and by the ability of perirhinal units to signal recency 

differences (Zhu et al., 1995a; Xiang & Brown, 1998). This unanticipated result 

notwithstanding, the behavioural data from the experiment in Chapter 3 demonstrate that 

the hippocampus is not required for object recognition memory. 

The behavioural results presented in Chapter 6 suggest that, although rats with perirhinal 

cortex lesions struggle to discriminate the identity of a novel object when it is placed in 

competition with a familiar object (Group Peri Discrimination), they can still detect the 

presence of novelty as indexed by exploration times that were not different from their 

surgical controls (Groups Peri Discrimination and Peri Novel). This evidence is 

consistent with that of other recent studies (Albasser et al., 2015; Olarte-Sanchez et al., 

2015).  Implicit within this proposal is the idea that other brain sites detect novelty in the 

absence of perirhinal cortex, even if that novelty information cannot be used to guide 

recognition discriminations. These behavioural results do not preclude the possibility 

that this could be accomplished by the hippocampus but this will be discussed further in 

a later section. More relevant to the issue of structural independence is if the behavioural 

results of Chapter 6 are taken together with those of Chapter 3, they create a behavioural 

dissociation in which the perirhinal cortex is a requirement for successful and efficient 

object recognition memory while the hippocampus is not (Chapters 3 & 6).  

7.3.2 Regional activation evidence for interdependence 

Limited Fos-related activity differences were observed due to the lesion status of the rats 

in the lesions studies described here (Chapters 3, 5 & 6). In Chapter 3, the effects of 

hippocampal lesions were restricted to area Te2, with an additional effect in the mid 

rostral-caudal level of the perirhinal cortex that was dependent on the behavioural 

condition. In both regions the lesions induced a reduction in Fos-related activity. The 

effect on the perirhinal cortex was presumably due to the loss of CA1 efferents and was 

restricted to the rats performing recency discriminations. This result echoes findings of 

disconnection studies in which functional perirhinal-hippocampal interactions are 

required to support associative learning about objects (Warburton & Brown, 2010; Jo & 
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Lee, 2010; Barker & Warburton, 2011). This conclusion is potentially undermined by 

the fact that the hippocampal lesions did not have behavioural consequences (Chapter 3) 

but may simply provide further evidence that the caudal region of the perirhinal cortex is 

more important for these kind of object based discriminations (Zhu et al., 1995; Wan et 

al., 1999, 2004; Warburton et al., 2003, 2005; Albasser et al., 2009, 2010b). The result 

suggests that under normal circumstances, during temporal discriminations, CA1 sends a 

signal to mid-perirhinal cortex. The signal could be related to additional learning about 

the associative properties of the familiar object. Indeed, recent single unit recording 

studies have demonstrated that over time the perirhinal cortex can encode stimulus-

outcome associations for highly familiar objects (Ahn & Lee, 2015; Eradath et al., 

2015). Nevertheless, this information is evidently not a requirement for the type of 

discriminations tested here (Chapter 3), providing further evidence for the ability of the 

perirhinal cortex, particularly the caudal region, to function in a manner that is not 

dependent on the hippocampus. 

Although the context-based behavioural task utilised in Chapter 5 did not provide an 

actual measure of learning, the hippocampus is known to be critical when learning about 

contexts (Philips & LeDoux, 1992; Honey & Good, 1993; Good & Bannerman, 1997; 

Mumby et al., 2002; Lee & Kesner, 2004). One of the main aims of this study was to 

examine the functional effects of perirhinal lesions on hippocampal activity during a 

hippocampal dependent task. There was no evidence of any lesion induced Fos-related 

activity deficits in the hippocampal formation; this provides yet more evidence for 

independence (Chapter 5).  

In the novel object based tasks described in Chapter 6, perirhinal cortex lesions did not 

affect the patterns of c-fos activity observed in the hippocampus proper. There was, 

however, a restricted effect observed in the distal region of the subiculum that was only 

evident when the rats were exploring novel objects rather than discriminating novel from 

familiar objects. The subiculum does receive direct inputs from the perirhinal cortex, 

however, this is a quite a minor connection and it preferentially terminates in the 

proximal region of the subiculum (Burwell & Amaral, 1998b; Furtak et al., 2007). The 

more typical finding was that hippocampal interactions, as measured by Fos, are 

insensitive to the loss of perirhinal cortex. This apparent independence complements the 

object recognition experiment in Chapter 3 which showed that hippocampal lesions 

spare parahippocampal c-fos interactions, creating a double dissociation. 
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At first glance, these results could be taken to indicate that the Fos-imaging procedure is 

not sensitive to lesion effects; however, this is not the case. Lesion induced deficits in 

regional Fos counts haven been reported, even in regions that are not directly connected 

to the lesion site (Vann et al., 2000; Jenkins et al., 2002, 2004). Of particular relevance 

is a study that demonstrated in several separate cohorts of rats, each engaged in different 

behavioural paradigms, that hippocampal lesions reduce Fos expression in other brain 

regions such as the retrosplenial cortex (Albasser et al., 2007). Thus, it is all the more 

striking that lesions to either the hippocampus or perirhinal cortex did not affect one 

another more generally (Chapters 3, 5 & 6).  

7.3.3 Network dynamics following removal of the hippocampus or perirhinal 

cortex 

If these two regions were indeed permanently part of the same functional system, then a 

network level analysis should be the most sensitive to dysfunction induced by loss of 

one of the network components. Again, the most striking result in all of the lesions 

studies presented here is the lack of network differences induced by lesions to the 

perirhinal cortex or hippocampus.  

The parahippocampal network that ostensibly supported both object recognition and 

object recency memory in Chapter 3 was not altered following removal of the 

hippocampus. This was evident in the overall network structure, in that the best fitting 

parahippocampal model was the same for all four groups of rats. Moreover, this 

consistency in the network was robust to direct testing. Stacking the Fos data from the 

rats with hippocampal lesions and their surgical controls on the same network model 

revealed that there no overall differences between these networks that were induced by 

hippocampal loss (Chapter 3). A complementary result was obtained in Chapter 6. 

Removal of the perirhinal cortex did not cause alterations in the network structure of 

lateral entorhinal - hippocampal interactions induced by either discriminating novel 

objects from familiar ones or exploration of novel objects. Further, direct comparison by 

stacking the group data on the same model revealed there were no differences (Chapter 

6). This indicates that lesions to the perirhinal cortex did not cause dysfunction in 

hippocampal processing related to novel objects. Together, these studies create a double 

dissociation; hippocampal lesions spare parahippocampal c-fos interactions while 

perirhinal lesions spare hippocampal c-fos interactions when rats are engaged in novel 

object based tasks (Chapters 3 & 6). This network dissociation complements evidence of 

double dissociations between perirhinal and hippocampal function despite their 
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interconnections, in both amnesic patients and behavioural effects on rodents with 

lesions (Graham & Hodges, 1997; Winters et al., 2004; Aggleton et al., 2010; Bowles et 

al., 2007, 2010).    

Unlike the object based experiments, network modelling revealed that lesions to the 

perirhinal cortex caused alterations in the network models related to novel context 

exploration. However, this difference was identified between the medial entorhinal 

cortex and CA1 at intermediate and temporal levels. Intrinsic hippocampal interactions 

were unaffected by the perirhinal lesions. More work is required to distinguish if the 

perirhinal cortex is directly implicated in these kinds of contextual tasks by 

deafferentation of the medial entorhinal cortex or if the effect is indirect due to loss of 

the inputs to the medial entorhinal cortex by deafferentation of regions more heavily 

connected to the perirhinal cortex such as the lateral entorhinal and postrhinal cortices 

(Burwell & Amaral, 1998b; Burwell, 2000).  

In isolation, based on the paucity of lesion differences, it could be suggested that 

structural equation modelling is not sensitive to alterations in network dynamics. 

However, another prominent pattern of results that emerged from the present 

experiments was that network alterations were observed based on modified behavioural 

task demands (discussed above). It seems probable that removing a vital component of a 

functional network would manifest in greater alterations to that network than the 

changes initiated by variations in the psychological processes underlying network 

activity. Thus, based on the fact that SEM is sensitive to alterations in task demands, 

further credibility is conferred upon the technique. Together, these results suggest that 

the hippocampus and perirhinal cortex are not functionally dependent on one another, 

particularly in relation to object processing.  

Based on the nature of the network models proposed for novel and familiar object 

processing, it might be expected that hippocampal activity may be sensitive to removal 

of the perirhinal cortex if a behavioural paradigm were used that is known to more 

directly involve the hippocampus, for example, an object-in-place task. Indeed, this is a 

direct prediction of the work presented here. As mentioned in Chapter 1, object-in-place 

task variants of the bow-tie maze have been carried out (Nelson & Vann, 2014) 

however, this paradigm is more akin to open-field testing as it is based on single rather 

than multiple trials. As outlined in Chapter 1, c-fos imaging is more suitable for use in 

conjunction with multiple-trial behavioural tests in which the animal does not have to be 

handled by the experimenter between trials, in order to ensure a robust Fos signal that is 
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above baseline levels and also to reduce the impact of individual stimuli (Albasser et al., 

2010b, 2013b). Future work will need to establish an appropriate behavioural method in 

order to test this prediction. 

Overall, the evidence presented here provides further support for the idea of functional 

heterogeneity among regions of the medial temporal lobe as well as for the existence of 

multiple systems that can function independently to support distinct memory processes. 

The debate regarding the consequences of hippocampal lesions on rodent object 

recognition memory is longstanding (Squire & Zola-Morgan, 1991; Brown & Aggleton, 

2001; Yonelinas, 2002). Hippocampal lesions have been shown to cause impairments in 

some studies (Clark et al., 2000; Broadbent et al., 2004, 2010; Cohen et al., 2013) with 

an absence of deficits reported in others (Aggleton et al., 1986; Glenn & Mumby, 1996; 

Forwood et al., 2005; Albasser et al., 2012). The model of parahippocampal-

hippocampal interactions presented above may provide a potential explanation for these 

inconsistencies. The models suggest that, although the hippocampus is not required to 

solve simple recognition memory tasks, it is activated incidentally, particularly during 

the encoding of novel stimuli. For some spontaneous tests of object recognition, 

associated item information that depends on the hippocampus, for example, context, 

location in time or place, may (unbeknownst to the experimenter) contribute to the 

normal pattern of object discrimination and so may affect exploration levels in intact 

animals. Consequently, hippocampal lesions may, in some cases, alter levels of 

exploration without disrupting the underlying ability to initially detect the novelty or 

familiarity of the test stimuli.  In normal intact animals, exploration of novel objects may 

prove to be prolonged by the engagement of hippocampal subfields that help to 

determine whether any prior learning about the stimulus has occurred and to ensure the 

effective learning of new associated information (Zeamer et al., 2011). The loss of this 

initial exploration could be interpreted as a recognition memory deficit, despite the 

animal being able to discriminate novel from familiar stimuli.  

7.3.4 Implications of lack of perirhinal lesion effects on novelty detection 

The earlier IEG findings predicted that perirhinal signals of novelty bias network 

activity towards the indirect dentate/CA3 pathway (Albasser et al., 2010b; Chapter 3).  

To test this prediction, the study in Chapter 6 focussed on the impact of perirhinal 

lesions on responses to novel stimuli, using two different behavioural conditions. The 

failure to find evidence of a switch to the direct CA1 pathway along with the 

behavioural evidence that rats with perirhinal lesions can detect novelty in the 
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environment but not identify the source, implies that extra-perirhinal sites can signal the 

novelty of objects.  

Further evidence for such extra-perirhinal signals comes from behavioural studies in 

which rats with perirhinal lesions demonstrate sample phase exploration equivalent to 

their surgical controls (Ennaceur et al., 1996; Aggleton et al., 1997; Winters et al., 2004; 

Barker et al., 2007; Bartko et al., 2007a, b; McTighe et al., 2010; Barker et al., 2011; 

Olarte-Sanchez et al., 2015). Additionally, rats with perirhinal lesions repeatedly 

exposed to either pairs of novel or pairs of familiar objects exhibit exploration levels 

equivalent to their surgical controls, including the expected decline in exploration of the 

familiar objects, while also displaying a simultaneous recognition deficit (Mumby et al., 

2007; Albasser et al., 2009, 2011a). Results demonstrating intact habituation to 

multimodal stimuli in rats with perirhinal lesions converge on the same notion 

(Robinson et al., 2009; Jones et al., 2012). An alternative candidate region for 

processing familiarity information is the temporal association area, TE/Te2 as this 

region has been shown to respond to stimulus novelty in both the monkey and the rat 

(Brown et al., 1987; Buffalo et al., 1999, 2000; Naya et al., 2003; Ho et al., 2011; Meyer 

et al., 2014). Although it should be pointed out that in many of the rats that received 

lesions to the perirhinal cortex, small amounts of damage encroached on area Te2, 

potentially weakening this hypothesis. 

As mentioned above, the behavioural results of Chapter 6 do not exclude the possibility 

that the extra perirhinal novelty detection mechanisms could be generated within the 

hippocampus. However, the absence of differences in the hippocampal component of the 

network models between groups of animals with and without perirhinal cortex would 

argue against the hippocampus generating this signal itself. Consequently, the question 

remains as to how this signal reaches the hippocampus. 

Dopamine signalling from the ventral tegmental area, has been linked to novelty 

dependent changes in hippocampal activity (Lisman & Grace, 2005). A recent human 

fMRI study demonstrated that the ability to remember new information is enhanced 

when a person is curious about the topic (Gruber et al., 2014). This improved memory 

effect was associated with increased activity in both the ventral tegmental area-

substantia nigra complex and the hippocampus, as well as by increased functional 

connectivity between these regions. Brain activity in these regions, specifically during 

the anticipation period before an answer was given to a trivia question predicted 

subsequent recall, predominantly when the subject were curious about the answer. 
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Curiosity can be thought of as novelty seeking behaviour, implicating novelty associated 

behaviour in humans with this connection between ventral tegmental area-substantia 

nigra complex and the hippocampus. 

Lisman et al., (2011) proposed a model in which novelty dependent dopamine release 

from the ventral tegmental area and/or the substantia nigra pars compacta into the 

hippocampus is driven by the pedunculopontine tegmentum. This brainstem nucleus 

receives afferent fibres from the perirhinal cortex and prefrontal cortex. The model 

suggests that, under normal circumstances, the initial novelty signal originates in the 

perirhinal cortex and this initiates the cascade of activity that ultimately leads to novelty 

dependent dopamine release in the hippocampus (Lisman et al., 2011). However, when 

the perirhinal cortex is damaged, perhaps the prefrontal cortex could assume this role. 

The medial prefrontal cortex is known to be involved in object associative learning 

(Barker et al., 2007; Warburton & Brown, 2010) as well as other cognitive tasks (Vertes 

et al., 2006; Heidbreder & Groenewegen, 2003). Indeed, the prelimbic cortex was 

considered as a site of interest in Chapter 6, however, the Fos-related activity data did 

not fit the anatomical route to the hippocampus (via the nucleus reuniens of the 

thalamus) that was tested in that experiment. The dopamine-related evidence discussed 

above suggests that further multi-synaptic connections between the prefrontal cortex and 

the hippocampus should be explored. 

Another possible alternative for an extra-perirhinal novelty signal is the amygdala. 

Human imaging studies have demonstrated that the amygdala is sensitive to novel 

stimuli as it reduces its response to repeated stimuli (Blackford et al., 2010; Weierich et 

al., 2010), even when emotionally neutral images are used (Balderston et al., 2011).  In 

the rodent, disruption of amygdala activity by the GABA-A antagonist, picrotoxin, 

prevented the increased Fos expression in the hippocampus that usually occurs when rats 

explore a novel environment. However, this disruption did not cause any changes in the 

exploratory behaviour of the rats (Sheth et al., 2008). Additionally, using the odour-

based receiver operating characteristic paradigm (outlined in Section 1.3.7.2), amygdala 

lesions were found to selectively impair familiarity, while not altering overall 

recognition memory (Farovik et al., 2012). Further, it has been demonstrated in slice 

preparations that, when stimulating the ventral region of area 36 of the perirhinal cortex, 

coincident signals from the lateral amygdala are required for the signal to propagate into 

the hippocampus and activate the dentate gyrus (Koganezawa et al., 2008). Although far 

from conclusive, these studies do implicate the amygdala in modulating the hippocampal 
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response to novelty. The amygdala is also known to functionally interact with the 

substantia nigra in relation to the processing of stimulus-outcome relationships (Lee et 

al., 2006). Thus, the amygdala could be involved in novelty detection in the absence of 

the perirhinal cortex through its direct connections with the hippocampus or by indirect 

connections with the dopamine system described above. Disconnection studies in which 

lesions are created in different brain structures in opposite hemispheres may aid in 

elucidating these relationships. Alternatively, virus-based lesion techniques, in which a 

retrograde virus could be injected into the amygdala and a drug subsequently infused 

into regions that project to it, such as the substantia nigra, may also provide relevant 

data. 

A very different standpoint on the ostensibly intact novelty detection in the rats with 

perirhinal lesions (Chapter 6) comes from the parallels between the present pattern of 

results and those from repetition priming in human amnesia. Priming is a form of 

implicit, rather than explicit, memory. Generally, priming tasks involve presenting a 

subject with items, the subject is then given a non-memory based task in which the 

previously encountered item are intermingled with new ones. Success in the task is 

facilitated (i.e., accuracy improved or response time reduced) by the prior exposure to 

the stimuli, even when the subject does not remember encountering them (Voss et al., 

2012). It has been demonstrated in amnesic patients, with damage to the medial temporal 

lobe, that repetition priming effects can remain intact even when recognition memory is 

severely impaired (Hamann & Squire, 1997; Stark & Squire, 2000). The behavioural 

results presented in Chapter 6 echo the findings of those patient studies; the subjects 

display behavioural changes based on prior experience but cannot use this information to 

identify the prior occurrence of a particular stimulus. Further evidence for this view 

comes from the demonstration, in rats, of facilitation of visual discrimination problems 

following priming (Tafozoli et al., 2012). 

7.3.5 Time since lesion surgery 

Of the lesion studies described in this thesis, all of the rats underwent surgery between 

four and nine months before beginning the IEG-imaging experiments described here. 

More specifically, the rats from the experiment in Chapter 3 were approximately nine 

months post-surgery at the start of the present study. JAR166 rats and JAR169 rats, 

described in Chapter 5, were eight and four months post-surgery respectively. While the 

two cohorts of rats from Chapter 6, JAR172 and JAR177 received their surgeries, nine 

and eight months respectively, before the present IEG imaging experiment. This may 
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have allowed time for compensatory mechanisms to develop. However, it is worth 

noting that amnesic patients with damage to the medial temporal lobe present with 

memory deficits many years after the initial insult occurred (Scoville & Milner, 1957; 

Baddeley et al., 2001; Mayes et al., 2004; Aggleton et al., 2005; Barbeau et al., 2005; 

Bowles et al., 2010; Dede et al., 2013). Mnemonic testing in monkeys with lesions can 

go on for several years after the lesion surgery (Zola-Morgan et al., 1992; Nemanic et al, 

2004). Furthermore, lesions studies in rats, in line with the present experiments, often 

behaviourally test for many months after the lesion surgery and find persistent deficits 

(Aggleton et al., 1986; Albasser et al., 2013a, 2015). Thus, the experiments described 

here were carried out in accordance with the norms of the field.   

7.4 Testing models of medial temporal lobe interactions 

Another aim of the work presented here was to test and anatomically refine models from 

the literature of how regions of the medial temporal lobe interact to support memory. 

The behavioural results of Chapter 3, that is, the lack of a deficit in novel object 

discrimination induced by hippocampal lesions provides evidence for a 

parahippocampal–prefrontal network that is concerned with discriminating the 

familiarity and recency of occurrence of objects (Aggleton & Brown, 1999; Aggleton, 

2012). Further support for this system comes from the network modelling results of 

Chapter 4 as many of the regions proposed to be part of the network were involved in 

the present functional network models, including; area Te2, the perirhinal cortex and 

lateral entorhinal cortex, as well as the medial prefrontal cortex and medial dorsal 

nucleus of the thalamus. 

The lack of a hippocampal lesion deficit in recognition memory (Chapter 3) along with 

the considerable evidence for the functional independence of the hippocampus and 

perirhinal cortex (discussed in the previous section) provides evidence against a 

hierarchical medial temporal lobe memory system which involves the perirhinal cortex 

and hippocampus, particularly in relation to recognition memory (Squire & Zola-

Morgan, 1991). 

The work presented across all experiments of this thesis provide evidence to support 

both the binding of item and context model (Diana et al., 2007) and the local vs. global 

reference frames model (Knierim et al., 2014). These models are in fact very similar, 

although Knierim’s model is more specific in terms of anatomy. The main difference 

between these models is the manner in which they conceptualise the stimuli that should 
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differentially engage the two routes through the parahippocampal cortices to the 

hippocampus. The former model distinguishes items and contexts, while the later model 

describes local cues and global cues. The interpretation here is that the present object 

based experiments map on to both items and local cues and the context experiment can 

also be thought of as involving global cues. Nomenclature notwithstanding, the present 

object based experiments were found to engage connections from the perirhinal cortex to 

lateral entorhinal cortex and on to the hippocampus (Chapters 3, 4 & 6), the putative 

‘what’ pathway. While the context based experiment described in Chapter 5 found 

evidence for the ‘where’ pathway as the optimal network models involved the postrhinal 

cortex, medial entorhinal cortex and the hippocampus. As mentioned above, the local vs. 

global reference frames model is more anatomically precise; this model proposes that 

the ‘what’/‘local cues’ pathway should specifically involve the distal region of CA1 and 

the proximal region of the subiculum. Indeed, this was found to be the case (Chapter 6). 

Additionally, the present results extend these models to distinguish the contributions of 

different cortical layers of the lateral entorhinal cortex (Chapter 6).   

7.5 Patterns of Fos expression 

In the experiments presented here there were some general patterns of Fos expression 

that were seen across several experiments. These patterns will be discussed in this 

section. 

7.5.1 Group differences in perirhinal Fos counts 

Previous studies that assessed Fos expression following modulation of stimulus class 

found that exposure to novel objects was associated with increased Fos expression in the 

perirhinal cortex and various other regions (Zhu et al., 1995b, 1996, 1997; Wan et al., 

1999; Albasser et al., 2010, 2013; see Table 1.1). The fact that the current object-based 

behavioural manipulations engendered very few group differences in the absolute 

number of neurons in the perirhinal cortex (Chapters 3, 4 & 6) may seem at odds with 

those studies. However, in all but one of those previous studies (Zhu et al., 1997) that 

reported condition differences, these differences were based on normalised Fos counts. 

The Fos immunohistochemical staining was carried out simultaneously for control-pairs 

in order to reduce the experimental variance between conditions introduced by the DAB 

visualisation step of the protocol. Normalised scores were calculated for each rat 

individually by dividing the mean number of Fos-positive cells in a particular region by 

the sum of the Fos-positive cells for both rats in each control pair (e.g., novel count / 
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novel + familiar counts). That proportion was then expressed as a percentage and as a 

consequence the normalised scores for each pair summed to 100. These normalised 

scores were compared between groups using an ANOVA. However, one of the 

assumptions underlying an ANOVA is the independence of observations (or more 

correctly, the independence of the error component of the observations; Howell, 2011) 

and the normalisation procedure violates this assumption. As a consequence, all of the 

Fos comparisons made in the present experiments were carried out using absolute Fos 

counts.   

In the recognition memory experiment presented in Chapter 3, Fos counts in the 

perirhinal cortex of the rats in the novel condition were higher than the corresponding 

paired rat in the familiar condition. However, due to the variance between the control 

pairs the differences did not reach statistical significance. Thus, the present results are 

perhaps not as divergent from previous studies as they first appear. Consequently, 

greater emphasis is placed on the inter-regional correlations. Further, in the study by 

Albasser et al., (2010b), on which the experiment in Chapter 3 was based, the rats in the 

familiar condition could not discriminate between objects that were last encountered on 

the previous trial and those last encountered in the previous session (Albasser et al., 

2010b). In contrast, the rats in the familiar condition of Chapter 3 discriminated above 

chance level, albeit to a lesser degree than the rats in the novel condition. Perhaps this 

behavioural feature is the basis of this lack of absolute differences in Fos-related activity 

between the novel and familiar conditions.  

The absence of Fos expression differences due to the behavioural condition was also 

seen in the recency based experiment described in Chapter 4. This result is perhaps less 

surprising than that of Chapter 3 based on the fact that the rats in the Recency Test and 

Recency Control groups had exactly the same amount of exposure to the test objects and 

all that differed was the order of object presentation at test.  

In Chapter 6 there were some specific alterations in regional Fos expression attributable 

to the different behavioural conditions. Increased lateral entorhinal Fos expression was 

associated with recognition memory, while increased CA1 and subicular Fos was 

associated with exploration of novel objects. The lack of perirhinal Fos differences were 

again unexpected based on the fact that rats in the novel-novel exploration condition 

encountered twice as many novel objects as those in the novel object discrimination 

condition. However, to my knowledge, little is known about the relationship between the 

number of stimuli to be encoded, and the number of active neurons involved in an 
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encoding ensemble in the perirhinal cortex. The evidence presented here suggests that 

this relationship is not linear. For example, if overlapping ensembles of neurons encode 

different stimuli then an overall increase in the number of active neurons would not 

necessarily be expected simply based on increasing the number of stimuli. 

Group differences in perirhinal Fos-related activity were observed in the novel context 

based experiment described Chapter 5. This is consistent with studies that report lesions 

to the perirhinal cortex disrupt contextual learning (Corodimas & LeDoux, 1995; Bucci 

et al., 2000, 2002; Kent & Brown, 2012). However, based on the fact that the 

comparison was against home-cage controls, rather than a fully matched behavioural 

condition, the significance of the result is difficult to interpret.  

7.5.2 Interregional correlations 

A pattern from the Fos data in Chapter 5 was that the groups of rats that served as home-

cage controls for the experiment (groups Peri Baseline and Sham Baseline) had far more 

significant inter-regional correlations than any of the groups that were engaged in a 

learning paradigm (Table 7.1). The Fos counts in these groups were very low, 

potentially at floor level, and so the number of significant inter-regional correlations 

potentially reflected the fact that the basal level of activity for a particular rat is similar 

in all of its brain regions, but slightly different to that of other rats. These animals had 

not experienced any learning opportunities and so the Fos expression observed could 

only reflect the resting state of the rodent brain.  This, along with other unpublished 

observations of very similar findings led to a tentative proposal that this could reflect the 

rodent equivalent of a default mode network (Lu et al., 2012).  

This interpretation was complicated by the fact that group Sham Discrimination from 

Chapter 6 was calculated to have an equivalent number of significant correlations as the 

two baseline groups (Table 7.1). It is worth pointing out that with the exception of the 

two home-cage control groups, the groups of rats with the fewest significant inter-

regional correlations were those with the lowest object-based behavioural task demands; 

group Peri Novel and Sham Novel from Chapter 6. This is particularly striking when 

compared to the groups in the discrimination condition; groups Peri Discrimination and 

Sham Discrimination have three times and almost six times as many significant inter-

regional correlations respectively than the groups in the novel-novel object condition. Of 

potential significance is the that fact that the animals in Chapter 6 had the shortest 

training protocol in the bow-tie maze, just prior to the final test session, of all of the 
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experiments described in this thesis. Further, the rats in the discrimination condition had 

higher task demands than their novel-novel condition counterparts. Taken together, this 

pattern could suggest a dynamic situation in which the regional activity of the resting-

state brain is highly inter-correlated. Learning opportunities cause a desynchronisation 

of activity in the medial temporal lobe until threshold is reached based on task demands 

and all regions become engaged in the task. Evidently, more work is required to 

elucidate these relationships. 

Table 7.1. Number of significant interregional correlations 

Chapter Group 

Number of possible 

interregional 

correlations 

Number of significant 

(<0.05) interregional 

correlations 
% significant 

correlations 
3 HPC Novel 33 16 49% 
  HPC Familiar 33 15 46% 
  Sham Novel 63 24 38% 
  Sham Familiar 63 14 22% 
4 Recency Test 322 123 38% 
  Recency Control 322 98 30% 
5 Peri Novel 105 25 23% 
  Peri Baseline 105 74 70% 
  Sham Novel 153 35 22% 
  Sham Baseline 153 114 74% 
6 Peri Novel 231 29 12% 
  Peri Discrimination 231 89 38% 
  Sham Novel 465 63 13% 
  Sham Discrimination 465 320 68% 

 

7.6 Proof of principle: Pilot tracer study 

A prediction of all of the experiments presented in this thesis was that the lateral 

entorhinal neurons identified as active by Fos-imaging were indeed the populations that 

project directly to the hippocampus. In order to test this prediction a pilot tracer study 

was carried out (not fully presented). Initially 16 rats were pre-trained in the bow-tie 

maze (Figure 2.2) as described in Section 2.3.3. Subsequently, the fluorescent retrograde 

axonal tracer, Fast Blue, was injected unilaterally into the septal region of the 

hippocampus while Cholera toxin subunit B conjugated to Alexa fluor 488 was injected 

into the contralateral hippocampus (Figure 7.1). The septal region of the hippocampus 
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was chosen as the network models derived in the preceding experiments that involved 

object recognition testing were based in this region of the hippocampus (Chapters 3 & 

6). Two different neuroanatomical tracers were utilised as this would allow for analysis 

of ipsilateral and contralateral projections separately. In addition, tracers can have 

different neuronal uptake efficiencies based on the uptake method by which they enter 

the axons (Lanciego & Wouterlood, 2011), thus, it has been recommended that where 

possible more than one tracer should be employed to confirm reliability of results 

(Schofield, 2008).  

 

Figure 7.1. Representative fluorescent retrograde tracer injection sites. 

These coronal sections depict representative injection sites of the fluorescent retrograde tracers 

injected into the septal region of the hippocampus for Group Novel (top row) and Group Familiar 

(bottom row). Scale bar: 500µm. 

 

Following recovery, the rats were divided into two behavioural conditions; Group Novel 

(n = 8) and Group Familiar (n = 8). They were behaviourally tested in the bow-tie maze 

according to the novel and familiar protocols described in Chapter 3 (Section 3.2.5) with 

two modifications. Firstly, the protocol was shortened such that each animal received 

two sessions per day for three days. Crucially, this allowed the rats in Group Familiar to 

explore the objects that should be highly familiar in the morning session of the third day 

before the final test session was administered in the same afternoon.  Secondly, the rats 

in Group Novel were presented with a different set of objects to their Group Familiar 

counterparts until the final test session on the afternoon of the third day, wherein, they 

were presented with the same set of objects that the rats in Group Familiar had explored 
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in all sessions. Consequently, the test objects were the same for both groups but were 

previously unexperienced by the rats in Group Novel. These modifications allowed for 

robust group differences in the discrimination measures (Figure 7.2). The rats in Group 

Novel discriminated novel objects from familiar ones significantly better than those in 

Group Familiar (Figure 7.2). Yet, both groups discriminated significantly above chance 

level. This pattern of behavioural results parallels those obtained in Chapter 3. 

 

Figure 7.2. Behavioural measures from the final session of the object recognition 

test. 

The graphs depict mean group performance after 20 trials as measured by: the cumulative exploration 

time for all objects (left panel), the cumulative D1 recognition index (middle panel), and the updated 

D2 ratio (right panel). For D1 and D2, a score of zero indicates a failure to discriminate. Group Novel, 

D1 and D2 scores were significantly above zero (one-sample t tests, both p<0.001) as were those for 

Group Familiar (one-sample t tests, both p<0.05). *p<0.05; ** p<0.01 for Group Novel compared to 

Group Familiar. Data are presented as means ±SEM.   

 

Following the final test session, rats were perfused as described in the General Methods 

section 2.4, the brains were sectioned and a Fos immunofluorescence protocol was 

carried out. This allowed for simultaneous quantification in the lateral entorhinal cortex 

of neurons that were labelled for both an anatomical marker and an activity marker. 

Initially the tracer positive neurons were identified and then the number of these tracer 

positive neurons that were also positive for Fos were quantified separately in cortical 

layers II and III of the lateral entorhinal cortex (Figure 7.3A-D). The number of tracer 

labelled neurons in these cortical layers was defined by the efficiency of the retrograde 

tracers and so can be thought of as a random sample of the neurons in the lateral 

entorhinal cortex that project to the septal region of the hippocampus. Accordingly, the 

number of these tracer positive neurons that were also Fos-positive were expressed as a 

percentage of the total number of tracer positive neurons (Figure 7.3E). Approximately 

60% of neurons in layer II and 50% of neurons in layer III of the lateral entorhinal 

cortex that project to the septal region of the hippocampus were assessed to be active 
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during the discrimination task. Further, this result did not differ between the two tracers 

used, indicating that this result is reliable. This finding demonstrated that the ensemble 

of neurons that are active in lateral entorhinal cortex during these object-based tasks 

include the population that project directly to the hippocampus. This provides evidence 

for the prediction on which the foregoing experiments presented in this thesis were 

based. 

 

Figure 7.3. Representative photomicrographs of the lateral entorhinal cortex. 

These coronal sections depict the lateral entorhinal cortex from rats in Group Novel (A) and Group 

Familiar (B). Inset in A and B are shown at higher magnification in C and D respectively. Fast Blue 

(blue) labelled neurons project to the ipsilateral septal hippocampus. Cholera toxin subunit B - Alexa 

fluor 488 (green) labelled neurons project to the contralateral septal hippocampus. Fos-labelled 

neurons (red) were the neurons active during the behavioural task. Arrows indicate examples of 

neurons double-labelled for anatomical and activity marker. Scale bar: 200µm. Graph depicts the 

mean percentage per animal of tracer positive neurons in cortical layers II and III that were also 

positive for Fos for rats in Groups Novel and Familiar. Data are presented as means ±SEM.  

 

It should be noted that the proportion of double-labelled neurons did not differ 

significantly between the behavioural conditions. Based on the results of the preceding 

experiments, it would have been predicted that the proportion of double-labelled neurons 

would be higher in Group Novel than Group Familiar, particularly in layer II. Further 

work is required to derive structural models for this data set in order to test if the 
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population of double labelled neurons in layers II and III fit the previously derived 

models of novel and familiar object processing. 

There is also a population of Fos-positive neurons that are not tracer positive (Figure 

7.3A-D). These neurons could in fact also project to the hippocampus but did not take up 

the tracer. Alternatively, the neurons may project to other regions of the 

parahippocampal cortex or the basal ganglia, as these are the strongest efferent 

connections of the lateral entorhinal cortex (Kerr et al., 2007).  

7.7 Summary 

To summarise, the main findings of the experiments presented here indicate that in the 

rat, the perirhinal cortex and hippocampus can function as part of a single network in 

order to support learning, however this interaction is not a requirement. Both of these 

regions have the surprising capacity to maintain their activity in the absence of the other. 

Additionally, when both the perirhinal cortex and the hippocampus are present, their 

interaction is defined by the novelty or familiarly of the stimuli to be explored. The 

network engaged by familiar objects is nested within that recruited by novel objects, 

creating an efficient mechanism for learning about novel stimuli with low redundancy of 

information. The effective strength of the individual connections within these networks 

can be modified by the behavioural relevance of the stimuli. Finally, evidence was 

generated in support of certain models that postulate how regions of the medial temporal 

lobe interact to support memory, namely Aggleton and Brown’s parahippocampal–

prefrontal network for discriminating the familiarity and recency of occurrence of 

objects (Aggleton & Brown, 1999; Aggleton, 2012), the binding of item and context 

model (Diana et al., 2007) and the local vs. global reference frames model (Knierim et 

al., 2014). However, this work also raises interesting questions relating to how novelty 

signals and regional activity can be maintained despite the loss of regions thought to be 

vital for their maintenance. Future work involving anatomically specific temporary 

neuronal inactivation techniques will be invaluable in answering these outstanding 

questions.  
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