157 research outputs found

    Correlation between three assay systems for anti-Mullerian hormone (AMH) determination

    Get PDF
    PURPOSE: Analysis of anti-Müllerian hormone (AMH) is becoming of recognized importance in reproductive medicine, but assays are not standardized. We have evaluated the correlation between the new Gen II ELISA kit (Beckman-Coutler) and the older ELISA kits by Immunotech (IOT) and Diagnostic Systems Laboratories (DSL). METHODS: A total of 56 archived serum samples from patients with subfertility or reproductive endocrine disorders were retrieved and assayed in duplicate using the three AMH ELISA kits . The samples covered a wide range of AMH concentrations (1.9 to 142.5 pmol/L). RESULTS: We observed good correlations between the new (AMH Gen II) and old AMH assay kits by IOT and DSL (R(2) = 0.971 and 0.930 respectively). The regression equations were AMH (Gen II) = 1.353 × AMH (IOT) + 0.051 and AMH (Gen II) = 1.223 × AMH (DSL) – 1.270 respectively. CONCLUSIONS: AMH concentrations using the Gen II kit are slightly higher than those from the IOT and DSL kits. Standardization of assay results worldwide is urgently required but this analysis facilitates the interpretation of values obtained historically and in future studies using any of the 3 assays available. Meanwhile, adapting clinical cut-offs from previously published work by direct conversion is not recommended

    Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiration-gated radiotherapy (RGRT) can decrease treatment toxicity by allowing for smaller treatment volumes for mobile tumors. RGRT is commonly performed using external surrogates of tumor motion. We describe the use of time-integrated electronic portal imaging (TI-EPI) to verify the position of internal structures during RGRT delivery</p> <p>Methods</p> <p>TI-EPI portals were generated by continuously collecting exit dose data (aSi500 EPID, Portal vision, Varian Medical Systems) when a respiratory motion phantom was irradiated during expiration, inspiration and free breathing phases. RGRT was delivered using the Varian RPM system, and grey value profile plots over a fixed trajectory were used to study object positions. Time-related positional information was derived by subtracting grey values from TI-EPI portals sharing the pixel matrix. TI-EPI portals were also collected in 2 patients undergoing RPM-triggered RGRT for a lung and hepatic tumor (with fiducial markers), and corresponding planning 4-dimensional CT (4DCT) scans were analyzed for motion amplitude.</p> <p>Results</p> <p>Integral grey values of phantom TI-EPI portals correlated well with mean object position in all respiratory phases. Cranio-caudal motion of internal structures ranged from 17.5–20.0 mm on planning 4DCT scans. TI-EPI of bronchial images reproduced with a mean value of 5.3 mm (1 SD 3.0 mm) located cranial to planned position. Mean hepatic fiducial markers reproduced with 3.2 mm (SD 2.2 mm) caudal to planned position. After bony alignment to exclude set-up errors, mean displacement in the two structures was 2.8 mm and 1.4 mm, respectively, and corresponding reproducibility in anatomy improved to 1.6 mm (1 SD).</p> <p>Conclusion</p> <p>TI-EPI appears to be a promising method for verifying delivery of RGRT. The RPM system was a good indirect surrogate of internal anatomy, but use of TI-EPI allowed for a direct link between anatomy and breathing patterns.</p

    p53 mutations in classic and pleomorphic invasive lobular carcinoma of the breast

    Get PDF
    Contains fulltext : 110338.pdf (publisher's version ) (Open Access)BACKGROUND: p53 is a tumor suppressor that is frequently mutated in human cancers. Although alterations in p53 are common in breast cancer, few studies have specifically investigated TP53 mutations in the breast cancer subtype invasive lobular carcinoma (ILC). Recently reported conditional mouse models have indicated that functional p53 inactivation may play a role in ILC development and progression. Since reports on the detection of TP53 mutations in the relatively favorable classic and more aggressive pleomorphic variants of ILC (PILC) are rare and ambiguous, we performed a comprehensive analysis to determine the mutation status of TP53 in these breast cancer subtypes. METHODS: To increase our understanding of p53-mediated pathways and the roles they may play in the etiology of classic ILC and PILC, we investigated TP53 mutations and p53 accumulation in a cohort of 22 cases of classic and 19 cases of PILC by direct DNA sequencing and immunohistochemistry. RESULTS: We observed 11 potentially pathogenic TP53 mutations, of which three were detected in classic ILC (13.6%) and 8 in PILC (42.1%; p = 0.04). While p53 protein accumulation was not significantly different between classic and pleomorphic ILC, mutations that affected structure and protein function were significantly associated with p53 protein levels. CONCLUSION: TP53 mutations occur more frequently in PILC than classic ILC.1 april 201

    Sequence-based identification of interface residues by an integrative profile combining hydrophobic and evolutionary information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions play essential roles in protein function determination and drug design. Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the performance for predicting protein interaction sites based on primary sequence alone.</p> <p>Results</p> <p>We propose a new idea to construct an integrative profile for each residue in a protein by combining its hydrophobic and evolutionary information. A support vector machine (SVM) ensemble is then developed, where SVMs train on different pairs of positive (interface sites) and negative (non-interface sites) subsets. The subsets having roughly the same sizes are grouped in the order of accessible surface area change before and after complexation. A self-organizing map (SOM) technique is applied to group similar input vectors to make more accurate the identification of interface residues. An ensemble of ten-SVMs achieves an MCC improvement by around 8% and F1 improvement by around 9% over that of three-SVMs. As expected, SVM ensembles constantly perform better than individual SVMs. In addition, the model by the integrative profiles outperforms that based on the sequence profile or the hydropathy scale alone. As our method uses a small number of features to encode the input vectors, our model is simpler, faster and more accurate than the existing methods.</p> <p>Conclusions</p> <p>The integrative profile by combining hydrophobic and evolutionary information contributes most to the protein-protein interaction prediction. Results show that evolutionary context of residue with respect to hydrophobicity makes better the identification of protein interface residues. In addition, the ensemble of SVM classifiers improves the prediction performance.</p> <p>Availability</p> <p>Datasets and software are available at <url>http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm</url>.</p

    Large needle aspiration biopsy and galectin-3 determination in selected thyroid nodules with indeterminate FNA-cytology

    Get PDF
    Thyroid fine-needle aspiration biopsy (FNA)-cytology is widely used for the preoperative characterisation of thyroid nodules but this task is difficult for follicular lesions, which often remain undefined. We propose a strategy for improving the preoperative characterisation of selected follicular thyroid proliferations, which is based on large needle aspiration biopsy (LNAB) and galectin-3 expression analysis. Eighty-five thyroid specimens were obtained by LNAB (20-gauge needles) from thyroid nodules with indeterminate follicular FNA-cytology. Aspirated material was processed as a tissue microbiopsy to obtain cell blocks for both cyto/histo-morphological evaluation and galectin-3 expression analysis, by using a purified monoclonal antibody to galectin-3 and a biotin-free immunoperoxidase staining method. Preoperative diagnosis was compared to the final histology. LNAB and cell-block technique allow a preliminary distinction between nodules with a homogeneous microfollicular/trabecular structure, as frequently observed in tumours, and lesions with mixed normo–micro–macrofollicular architecture, as observed in goitre. Furthermore, LNAB provides optimal substrates for galectin-3 expression analysis. Among 85 cases tested, 14 galectin-3-positive cases were discovered preoperatively (11 thyroid cancers and three adenomas confirmed at the final histology), whereas galectin-3-negative cases were 71 (one carcinoma and 70 benign proliferations at the final histology). Sensitivity, specificity and diagnostic accuracy of this integrated morphologic and phenotypic diagnostic approach were 91.6, 97.2 and 95.3%, respectively. In conclusion, LNAB plus galectin-3 expression analysis when applied preoperatively to selected thyroid nodules candidate to surgery can potentially reduce unnecessary thyroid resections

    Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases

    Get PDF
    BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25–30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing

    The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins

    Get PDF
    Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the \u27venom-ome\u27 and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 \u27venom-ome-specific toxins\u27 (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery

    A systematic review showing the lack of diagnostic criteria and tools developed for lower-limb cellulitis

    Get PDF
    BACKGROUND: Cellulitis can be a difficult diagnosis to make. Furthermore, 31% of patients admitted from the emergency department with suspected lower-limb cellulitis have been misdiagnosed, with incorrect treatment potentially resulting in avoidable hospital admission and the prescription of unnecessary antibiotics. OBJECTIVES: We sought to identify diagnostic criteria or tools that have been developed for lower-limb cellulitis. METHODS: We conducted a systematic review using Ovid MEDLINE and Embase databases in May 2018, with the aim of describing diagnostic criteria and tools developed for lower-limb cellulitis, and we assessed the quality of the studies identified using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. We included all types of study that described diagnostic criteria or tools. RESULTS: Eight observational studies were included. Five studies examined biochemical markers, two studies assessed imaging and one study developed a diagnostic decision model. All eight studies were considered to have a high risk for bias in at least one domain. The quantity and quality of available data was low and results could not be pooled owing to the heterogeneity of the findings. CONCLUSIONS: There is a lack of high-quality publications describing criteria or tools for diagnosing lower-limb cellulitis. Future studies using prospective designs, validated in both primary and secondary care settings, are needed. What's already known about this topic? Diagnosing lower-limb cellulitis on first presentation is challenging. Approximately one in three patients admitted from the emergency department with suspected lower-limb cellulitis do not have cellulitis and are given another diagnosis on discharge. Consequently, this results in potentially avoidable hospital admissions and the prescription of unnecessary antibiotics. There are no diagnostic criteria available for lower-limb cellulitis in the U.K. What does this study add? This systematic review has identified a key research gap in the diagnosis of lower-limb cellulitis. There is a current lack of robustly developed and validated diagnostic criteria or tools for use in clinical practice
    • …
    corecore