3,574 research outputs found

    Systematic screening of bryophytes for antitumor agents

    Get PDF
    References are made to cytotoxic and/or antitumor compounds that have been isolated - ansamitocin P-3 from Claopodium crispifolium (Hook.) Ren. & Card. and Anomodon attenuatus Hueb., or an associated actinomycete, and ohioensins and pallidisetums from Polytrichum spp. Several hundred collections, which have been obtained from temperate regions of North America during 1990 and 1991, are currently being screened in new bioassays; active sesquiterpene lactones have been recently isolated from species of Porella. The methodologies of collecting and screening bryophyte samples are discussed with consideration to costs based on expected number of samples that might be collected in a day, the diversity in the collections as related to phytogeography and vegetation types, and the bryophyte cover that is vanishing in many forest regions of the United States. The difficulties in obtaining large collections for isolation of active agents are also discussed by examplerecollection of Claopodium crispifolium

    Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model

    Get PDF
    Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and atomic number (Z) reconstructions to a significant extent.S.J.L., G.R.M., and A.M.K. acknowledge funding through the DigiCore consortium and the support of a linkage grant (LP150101040) from the Australian Research Council and FEI Company

    Consortium on Automated Analytical Laboratory Systems (CAALS)

    Get PDF

    Representing fine-wire EMG with surface EMG in three thigh muscles during high knee flexion movements

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.jelekin.2018.08.006 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Activation waveforms of vastus intermedius, adductor magnus, and semimembranosus have not been reported for high knee flexion activities such as kneeling or squatting, likely due to the invasive procedures required for their measurement. Their relatively large physiological cross sectional areas would suggest their contributions to knee joint loading could be considerable. Therefore, the purpose of this study was to quantify the activities of these muscles using fine-wire EMG and to assess easy to measure surface sites (vastus lateralis, rectus femoris, vastus medialis, semitendinosus, and biceps femoris) for their potential as proxy measures using 0.85 R2 as criteria for successful representation of deep muscle activity by that measured at a surface site. Overall, no surface and fine-wire site pair met both criteria for these movements. When fine-wire measurement of muscle activity is infeasible or impractical, the waveforms presented in supplementary material could be used as a guide for the activity of these deep muscles. Although select muscles for some participants satisfied our criteria, inter-participant variability was considerable. Therefore, future muscle models may benefit from fine-wire measurement of these muscles, but researchers should be cautious of electrode site specificity.Natural Sciences and Engineering Research Council of Canada [#418647]University of OttawaUniversity of WaterlooOntario Graduate Scholarshi

    Electronic transport anisotropy of 2D carriers in biaxial compressive strained germanium

    Get PDF
    The anisotropic nature of carrier mobility in simple cubic crystalline semiconductors, such as technologically important silicon and germanium, is well understood as a consequence of effective mass anisotropy arising from a change in band structure along non-identical surface crystal directions. In contrast to this, we show experimentally that this type of anisotropy is not the dominant contribution. Recent advances in epitaxial growth of high quality germanium enabled the appearance of high mobility 2D carriers suitable for such an experiment. A strong anisotropy of 2D carrier mobility, effective mass, quantum, and transport lifetime has been observed, through measurements of quantum phenomena at low temperatures, between the ⟹110⟩ and ⟹100⟩ in-plane crystallographic directions. These results have important consequences for electronic devices and sensor designs and suggest similar effects could be observed in technologically relevant and emerging materials such as SiGe, SiC, GeSn, GeSnSi, and C (Diamond)

    Group analysis of a class of nonlinear Kolmogorov equations

    Full text link
    A class of (1+2)-dimensional diffusion-convection equations (nonlinear Kolmogorov equations) with time-dependent coefficients is studied with Lie symmetry point of view. The complete group classification is achieved using a gauging of arbitrary elements (i.e. via reducing the number of variable coefficients) with the application of equivalence transformations. Two possible gaugings are discussed in detail in order to show how equivalence groups serve in making the optimal choice.Comment: 12 pages, 4 table
    • 

    corecore