186 research outputs found

    HIV p24-Specific Helper T Cell Clones From Immunised Primates Recognize Highly Conserved Regions of HIV-l

    Get PDF
    We have investigated Th cell recognition of the HIV core protein p24 by using CD4+ T cell clones derived from cynomolgus macaques immunized with hybrid HIV p24:Ty virus-like particles (VLP). T cell lines from two immunized animals responded to p24:Ty-VLP, control Ty-VLP, purified p24, and whole inactivated HIV, indicating the presence of T cells specific for p24 as well as the Ty carrier protein. The HIV determinants recognized by the T cell lines were identified by using a series of overlapping peptides synthesized according to the sequence of p24. Both T cell lines recognized peptide 11 (amino acids 235-249) and peptide 14 (amino acids 265- 279). In addition, one T cell line also responded to peptide 9 (amino acids 215-229). Definitive identification of two T cell epitopes on p24 was confirmed at the clonal level: from a total of four T cell clones generated from one of the T cell lines, two respond specifically to peptide 11 and two to peptide 14. The T cell clones were CD4' and MHC class 11-restricted and secreted IL-2 in response to stimulation with purified p24, inactivated HIV or a single synthetic peptide. The specificityof the Th clones for variant peptides demonstrated cross-reactivity with two simian immunodeficiency virus isolates, but only limited responses to HIV-2 sequences. However, the Th cell epitopes identified on p24 are highly conserved between 12 HIV-1 isolates and were recognized by both of the immunized primates. These sequences may therefore be useful for priming a broadly reactive immune response to HIV-1

    Finding reliable solutions:Event-driven probabilistic constraint programming

    Get PDF
    Real-life management decisions are usually made in uncertain environments, and decision support systems that ignore this uncertainty are unlikely to provide realistic guidance. We show that previous approaches fail to provide appropriate support for reasoning about reliability under uncertainty. We propose a new framework that addresses this issue by allowing logical dependencies between constraints. Reliability is then defined in terms of key constraints called "events", which are related to other constraints via these dependencies. We illustrate our approach on three problems, contrast it with existing frameworks, and discuss future developments

    The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae

    Full text link
    The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty 1 transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25–35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty1 copy number were maintained for ∼100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to ∼0.0, and the populations had became dominated by a small number of clones containing >0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42799/1/10709_2004_Article_BF00133718.pd

    Retrotransposons and the evolution of mammalian gene expression

    Full text link
    Transposable elements, and retroviral-like elements in particular, are a rich potential source of genetic variation within a host's genome. Many mutations of endogenous genes in phylogenetically diverse organisms are due to insertion of elements that affect gene expression by altering the normal pattern of regulation. While few such associations are known to have been maintained over time, two recently elucidated examples suggest transposable elements may have a significant impact in evolution of gene expression. The first example, concerning the mouse sex-limited protein ( Slp ), clearly establishes that ancient retroviral enhancer sequences now confer hormonal dependence on the adjacent gene. The second example shows that within the human amylase gene family, salivary specific expression has arisen due to inserted sequences, deriving perhaps from a conjunction of two retrotransposable elements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42800/1/10709_2004_Article_BF00133720.pd
    • …
    corecore