
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finding reliable solutions: event-driven probabilistic constraint
programming

Citation for published version:
Tarim, SA, Hnich, B, Prestwich, S & Rossi, R 2009, 'Finding reliable solutions: event-driven probabilistic
constraint programming' Annals of Operations Research, vol. 171, no. 1, pp. 77-99. DOI: 10.1007/s10479-
008-0382-6

Digital Object Identifier (DOI):
10.1007/s10479-008-0382-6

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Annals of Operations Research

Publisher Rights Statement:
© Tarim, S. A., Hnich, B., Prestwich, S., & Rossi, R. (2009). Finding reliable solutions: event-driven probabilistic
constraint programming. Annals of Operations Research, 171(1), 77-99. 10.1007/s10479-008-0382-6

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28962323?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s10479-008-0382-6
https://www.research.ed.ac.uk/portal/en/publications/finding-reliable-solutions-eventdriven-probabilistic-constraint-programming(56330320-36e8-4505-8438-54dae782afd5).html


Annals of Operations Research manuscript No.
(will be inserted by the editor)

Finding Reliable Solutions: Event-Driven
Probabilistic Constraint Programming

S. Armagan Tarim1, Brahim Hnich2, Steven Prestwich3, Roberto
Rossi3,4

1 Department of Management, Hacettepe University, Ankara, Turkey, e-mail:
armagan.tarim@hacettepe.edu.tr

2 Faculty of Computer Science, Izmir University of Economics, Izmir, Turkey,
e-mail: brahim.hnich@ieu.edu.tr

3 Cork Constraint Computation Centre, University College, Cork, Ireland, e-mail:
s.prestwich@4c.ucc.ie

4 Centre for Telecommunication Value-Chain Driven Research, Ireland, e-mail:
rrossi@4c.ucc.ie

Received: / Revised version:

Abstract Real-life management decisions are usually made in uncertain
environments, and decision support systems that ignore this uncertainty are
unlikely to provide realistic guidance. We show that previous approaches fail
to provide appropriate support for reasoning about reliability under uncer-
tainty. We propose a new framework that addresses this issue by allowing
logical dependencies between constraints. Reliability is then defined in terms
of key constraints called “events”, which are related to other constraints via
these dependencies. We illustrate our approach on three problems, contrast
it with existing frameworks, and discuss future developments.

Key words Event-Driven – Probabilistic – Constraint Programming –
Uncertainty

1 Introduction

Real-life management decisions are usually made in uncertain environments.
Random behavior such as the weather, lack of essential exact information
such as the future demand, incorrect data due to errors in measurement,
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and vague or incomplete definitions, exemplifies the theme of uncertainty
in such environments.

It is generally impossible for any set of decisions to satisfy all the con-
straints under all circumstances. For instance, consider a probabilistic single-
item distribution problem in which there are n independent suppliers with
their given probabilistic supply capacities, and m different customers with
known demands. It is realistic to assume that the deliveries are fixed in
advance, by consideration of the probabilistic supply capacities. The need
to fix the deliveries in advance has been at the heart of many problems such
as the buying of raw materials on markets with fluctuating prices [15]. Thus
the investigation of modeling approaches and solution algorithms is poten-
tially important not only from a theoretical point of view, but also from the
perspective of practical applications. It is quite unrealistic to ask for a plan
that satisfies all demand and probabilistic supply constraints, irrespective
of the unfolding of uncertainties. In order to deal with the optimization
problems with stochastic/fuzzy factors, stochastic programming and fuzzy
programming have been greatly developed. The theory of stochastic pro-
gramming has been summarized by several books such as Sengupta [24],
Vajda [27], Kall and Wallace [14] etc.

To address this and related situations, we propose that one should deter-
mine in advance a distribution plan that satisfies customer demands as far
as possible, under some measure that accurately captures the user’s notion
of reliability. To address this important class of problems, we take a novel
approach and develop a modeling framework that supports more reliable
decisions in uncertain environments, yet reduces the cognitive burden on
a decision-maker. Our Event-Driven Probabilistic Constraint Programming
(EDP-CP) modeling framework allows users to designate certain proba-
bilistic constraints (such as demand constraints) as events whose chance of
satisfaction must be maximized, subject to hard constraints (such as a lower
bound on profit), and also logical dependencies among constraints (such as
the dependency of demand constraints on the satisfaction of the probabilis-
tic supply constraints). We shall show that the EDP-CP framework allows
more realistic modeling of some problems than previous approaches.

Stochastic Programming Fuzzy Programming

Uncertain Programming

Expected
Value
Model

Chance
Constrained

Programming

Dependent
Chance

Programming

Fig. 1 Techniques for modeling decision problems under uncertainty
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Complex decision systems are usually multidimensional, multifaceted,
multifunctional and multicriteria, and include stochastic or fuzzy factors.
With the requirement of considering randomness, appropriate formulations
of stochastic programming have been developed to suit the different pur-
poses of management (Fig. 1). The first method dealing with stochastic pa-
rameters in stochastic programming is the so-called expected value model [3],
which optimizes the expected objective functions subject to some expected
constraints. The second, chance-constrained programming, was pioneered by
Charnes and Cooper [5] as a means of handling uncertainty by specifying a
confidence level at which it is desired that the stochastic constraint holds.
Chance-constrained programming models can be converted into determin-
istic equivalents for some special cases, and then solved by some solution
methods of deterministic mathematical programming. However it is almost
impossible to do this for complex chance-constrained programming mod-
els. In order to overcome this dilemma, Liu and Iwamura [20] proposed
a stochastic simulation-based genetic algorithm for solving general chance-
constrained programming as well as chance-constrained multi-objective pro-
gramming, and chance-constrained goal programming, in which the stochas-
tic simulation is employed to check the feasibility of solutions and to handle
the objective functions. Sometimes a complex stochastic decision system
undertakes multiple tasks called events, and the decision-maker wishes to
maximize the chance functions which are defined as the probabilities of satis-
fying these events. In order to model this type of problem, Liu [18] provided
a theoretical framework of the third type of stochastic programming, called
dependent-chance programming. Dependent-chance multiobjective program-
ming and dependent-chance goal programming have also been presented (for
a more detailed discussion see [19]).

Roughly speaking, dependent-chance programming is aimed at maxi-
mizing some chance functions of events in an uncertain environment. In
deterministic mathematical programming as well as expected value models
and chance-constrained programming, the feasible set is essentially assumed
to be deterministic after the real problem is modeled. That is, an opti-
mal solution is always given regardless of whether is it can be performed
in practice. However the given solution may be impossible to perform if
the realization of uncertain parameters is unfavorable. Thus, the dependent
chance-programming model never assumes that the feasible set is determin-
istic. In fact, the feasible set of dependent chance-programming is described
by a so-called uncertain environment. Although a deterministic solution is
given by the dependent chance-programming model, this solution needs to
be performed as far as possible. This special feature of dependent chance-
programming is very different from other existing stochastic programming
techniques. However, such problems do exist in the real world. Some real
and potential applications of dependent chance programming have been
presented by Liu and Ku [21], Liu [16,17], Iwamura and Liu [20], and more
recently by Wu et al. [28]. In what follows we will see that the framework
we propose, EDP-CP, extends and improves Liu’s framework by providing
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to the user more expressiveness, in order to capture a more realistic and ac-
curate measure of plan reliability, and an exact solution method in contrast
to Liu’s genetic algorithm.

The rest of this paper is organized as follows. In Section 2 we motivate
the work. We define the new modelling framework in Section 3 and show
how to compile any EDP-CP model into an equivalent constraint program
in Section 4. In Section 5 we survey a scenario reduction technique that
may be applied to keep the number of possible scenarios under control, ref-
erences are given to other works adopting the same strategy to reduce the
number of scenarios considered. In Section 6 we illustrate the flexibility and
usefulness of our framework by studying three examples: probabilistic sup-
ply chain planning, scheduling, and production planning/capital budgeting.
In Section 7 we survey related work. Finally, in Section 8 we summarise our
work and discuss future directions.

2 Motivation

Our motivation for this work comes from an application in the supply chain
management area: more precisely, addressing supply and demand uncertain-
ties. The main inherent difficulty in dealing with this class of probabilistic
problems is the fact that certain constraints (such as the ones imposing on
complete satisfaction of customer demands) may hinge on the satisfaction of
others (such as supply constraints). The problem is particularly interesting
when the latter constraints are exposed to uncertainty.

2.1 A motivating example

We provide a concrete example of the distribution problem to motivate the
work. Figure 2 depicts a distribution system with three suppliers S1,2,3 and
three customers D1,2,3. The scopes of the suppliers are S1 Ã {D1, D2},
S2 Ã {D1, D2, D3}, S3 Ã {D2, D3}. The deterministic customer demands
are [8, 7, 4]. The suppliers’ probabilistic capacities are expressed as dis-
crete probability density functions: fS1 = {3(0.3), 7(0.5), 12(0.2)}, fS2 =
{6(0.4), 7(0.2), 10(0.4)} and fS3 = {3(0.3), 8(0.7)}, where values in paren-
theses represent probabilities. The objective is to obtain the most reliable
distribution plan. In the following sections we shall consider a series of
models of increasing sophistication. Our running example will emphasize
differences between these models.

2.2 Model 1: Naive

Define decision variables xs,c where s, c ∈ {1, 2, 3}, denoting the planned
supply from supplier s to customer c. Also define random variables ξi de-
noting the uncertain supply available to supplier i. A constant ζc denotes
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Fig. 2 Distribution Problem

the deterministic demand of customer c. Any plan must satisfy the hard
constraints ∑

s∈Sc

xs,c = ζc

where Sc is the set of suppliers for customer c. There are also probabilistic
constraints between decision and random variables:

∑

c∈Cs

xs,c ≤ ξs

where Cs is the set of customers for supplier s. These probabilistic con-
straints are “soft”: they may be violated in some scenarios. We therefore
do not add them to the model (as with the deterministic constraints), but
instead use them to define an objective function:

max
∑

s

E

{ ∑

c∈Cs

xs,c ≤ ξs

}
(1)

where E{C}, the “expectation operator” [13], is the sum of the probabilities
of the scenarios in which constraint C is satisfied. This model may be viewed
as a Soft Probabilistic CSP , that is a Probabilistic CSP [8] where some
contraints are hard, plus an optimization criterion that we wish to maximise
the probability that other probabilistic soft constraints are satisfied.

A drawback of this model is that the objective function does not mea-
sure plan reliability in a realistic way. For example, in any scenario in which
supplier 2 cannot meet its demands (so that x2,1 +x2,2 +x2,3 > ξ2) we can-
not guarantee that any customer is supplied. This is therefore a worst-case
plan for the given scenario, yet in the above model only one probabilistic
constraint is violated under this scenario. A plan in which two or three
probabilistic constraints are violated would be assigned a lower objective
function value, but would be no less reliable. Worse still, consider a similar
problem in which supplier 1 supplies only customer 1, supplier 3 supplies
only customer 3, and supplier 2 again supplies customers 1, 2 and 3. A plan
in which suppliers 1 and 3 are unable to meet their demands under some
scenario would be classed as less reliable than one in which supplier 2 is
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ERM

Plan Planned Delivery Si Ã Dj : (i, j)
No (1, 1) (1, 2) (2, 1) (2, 2) (2, 3) (3, 2) (3, 3) M

o
d
e
l
1

M
o
d
e
l
2

M
o
d
e
l
3

M
o
d
e
l
4

1 3 0 5 6 1 1 3 1.7 0.0 0.0 0.0
2 3 5 5 1 1 1 3 1.5 0.6 0.6 0.6
3 0 2 0 2 4 3 0 0.0 0.0 0.0 2.0
4 5 0 3 3 0 4 4 2.4 1.8 2.1 2.1
5 6 0 2 0 4 7 0 2.4 1.8 2.4 2.4

Table 1 Representative distribution plans and event realization measures
(ERM), that is reliability measures, computed by the different models we pre-
sented

unable to meet its demand under the same scenario, because more proba-
bilistic constraints are violated. However, the latter plan is less reliable: in
the first plan customer 2 is satisfied, but in the second plan no customer is.

In Table 1 we show how this naive model (column “Model 1”) classifies
reliability of five different plans for our concrete example. In the next sec-
tions we will show that other models can give a more accurate and realistic
measure of the reliability of these plans.

2.3 Model 2: Dependent-Chance Programming

To improve the naive model we may define a more intelligent objective
function: the reliability of a plan is now the sum of the reliabilities of three
events, where an event is the satisfaction of a customer:

max
∑

c

E

{ ∧

s∈Sc

( ∑

c′∈Cs

xs,c′ ≤ ξs

)}
(2)

where ∧ denotes logical conjunction: E{C ∧ C ′} is the sum of the proba-
bilities of the scenarios in which both C and C ′ are satisfied. For example
the reliability of satisfaction of customer 1 is the sum of the probabilities
of the scenarios in which suppliers 1 and 2 both meet their demands. Un-
der this objective function, our worst-case plan (in which supplier 2 cannot
meet its demands) is assigned reliability 0 in the scenario, because the vio-
lated probabilistic constraint x2,1 + x2,2 + x2,3 ≤ ξ2 affects the reliability of
each customer. Allowing logical connectives between constraints allows us to
express the problem more accurately. This model is similar to a Dependent-
Chance Programming [20] approach to a related problem.

Let us observe in Table 1 how this new notion of reliability affects the
plans already considered. Note that the new objective function defines a
completely new notion of reliability, therefore results provided by Model
1 and 2 are incomparable since Model 1 measures reliability in terms of
expected number of suppliers that meet their demand, while in Model 2 the
measure refers to the expected number of unsatisfied customers. We shall see
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that the second notion of reliability reflects a higher level of expressiveness
and is closer to what is perceived as reliable by common sense.

To gain more insight into the notion of reliability captured by Model 2 we
now examine two different distribution plans, 1 and 2. These two plans share
common decisions, except at S1 Ã D2 and S2 Ã D2. Plan 1 (2) requires
a capacity value of 3 units (8 units) at S1 to be feasible, which is available
with probability 1.0 (0.2). However if we consider S2, Plan 1 (2) requires
a capacity value of 12 units (7 units) to be feasible. The corresponding
probability is 0.0 (0.6), thus Plan 2 is more reliable than Plan 1. It is now
easy to see how logical connectives introduced in Eq. 2 capture a more
intuitive and accurate measure for the reliability of a plan that, as seen, is
expressed in terms of expected number of satisfied customers, respectively
0.0 and 0.6 for Plan 1 and 2. Note that the reliability measure in Model 1
classifies Plan 1 as more reliable than Plan 2, since the latter violates more
probabilistic constraints. Obviously such a measure is flawed since Plan 1
is never able to reliably satisfy any customer as supplier 2 can not provide
12 units of capacity.

2.4 Model 3: EDP-CP

However, even the second model is flawed. Consider a plan in which x1,1 = 0
so that customer 1 must receive all supplies from supplier 2. The reliability
of the satisfaction of customer 1 should now be independent of the ability of
supplier 1 to meet its demand, but in the second model it is still dependent;
this point was not considered in [20]. We should therefore refine the objective
via further logical connectives between constraints:

max
∑

c

E

{ ∧

s∈Sc

(
xs,c 6= 0 ⇒

∑

c′∈Cs

xs,c′ ≤ ξs

)}
(3)

where ⇒ denotes logical implication: E{C ⇒ C ′} is the sum of the prob-
abilities of the scenarios in which either C is violated or C ′ is satisfied, or
both. Because of this modification, under a scenario in which x1,1 = 0 there
is no longer a penalty if ∑

c′∈C1

xs,c′ ≤ ξ1

is violated. In this case, the reliability of a plan is gauged by an event
realization measure which gives equal importance (i.e., equal weights) to
satisfying demands completely at D1, D2, and D3.

We now consider Plans 4 and 5. By observing differences between these
plans it is easy to see how the further logical connectives introduced in Eq. 3
affects reliability of the solutions. In Plan 4, {S1, S2} Ã D1, {S2, S3} Ã D2,
S3 Ã D3. In other words, S3 supplies two customers. In Plan 5 {S1, S2} Ã
D1, but S3 Ã D2 and S2 Ã D3. Therefore in both the plans S1 supplies
the same customer D1, and S2 supplies two customers (respectively D1, D2
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and D1, D3), while S3 in Plan 4 supplies two customers (D2 and D3) and in
Plan 5 only supplies one customer (D3). If S1 fails to meet the requirement
in both the plans it will affect only D1 with probability 0.3. S2 cannot fail
to meet the demand in both the plans. But in Plan 4 if S3 does not provide
8 units as required, with probability 0.3, it will affect both D2 and D3, while
in Plan 5 if S3 does not provide 7 units, with the same probability 0.3, it
will affect only D2. Thus Plan 5 is obviously more reliable than plan 4. Such
a notion is captured by Model 3, which therefore provides a more accurate
reliability measure with respect to the former ones we presented. In fact the
reader may observe that in Model 1 and 2 Plan 4 and 5 are classified as
equally reliable.

2.5 Model 4: EDP-CP

So far, the decision-maker’s objective has been to maximize the plan relia-
bility, defined in such a way that all violated plans are treated equally. In
other words, plans in which not all customer demand constraints hold are
considered equally unreliable, irrespective of the number of customers that
are completely satisfied. This obviously constitutes a limit for the first three
models presented, since often we may get unrealistic solutions where we try
to satisfy every customer achieving a poor overall reliability. An alterna-
tive objective could aim to satisfy as many customers as possible, that is
to meet as many demand constraints as possible under probabilistic supply
constraints. Clearly, this new objective may have a wider application and
may lead to more realistic solutions where some customers may be dropped
in order to serve the others with higher reliability.

In the first EDP-CP model any plan must satisfy the hard constraints on
demands ζc, but a plan that reliably satisfies two customers might be more
desirable than one that satisfies all three customers less reliably. We can
model such a measure of plan reliability by removing the hard constraints
and using them in the objective function instead:

max
∑

c

E

{[ ∧

s∈Sc

(
xs,c 6= 0 ⇒

∑

c′∈Cs

xs,c′ ≤ ξs

)]
∧

( ∑

s′∈Sc

xs′,c = ζc

)}

(4)
A direct consequence of this new objective on optimized plans is that so-
lutions may no longer aim for complete satisfaction of all customers, but
most likely a subset of it, with higher reliability. Under this new objective,
distribution Plan 3 in Model 4 guarantees complete satisfaction of D2 and
D3 with a reliability score of 2.0, whereas under the previous models it is
assigned reliability score 0.

In Table 1 the column for Model 4 depicts an accurate and realistic clas-
sification for the reliability measures of the plans considered in our concrete
example.
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2.6 A meta-constraint

We believe that our final model is of a form that will apply to many prob-
lems. The following sections present a formalization of a modeling frame-
work to express such problems naturally and propose a compilation from
the given formalization into a standard constraint program. In Section 3.2,
we shall introduce a meta-constraint to simplify complex expressions such
as those in our final model, so that it can be written in the form

Maximize∑
c E

{
ec :

∑
s′∈Sc

xs′,c = ζc

}
given that
(∀c) (∀s ∈ Sc) Dependency

(
ec,

∑
c′∈Cs

xs,c′ ≤ ξs, xs,c 6= 0
)
.

This construct is equivalent to Eq. 4, but by expressing the problem in
this form, through the new keyword “given that”, we separate the log-
ical dependencies involving the events from the definition of the events.
This way we aim to reduce the cognitive burden on the user. It should be
noted that events ec, although they appear as deterministic constraints1,
are actually probabilistic. In fact their probabilistic nature is induced by
the given dependencies. In practice the satisfaction of customer demands,
that is constraints ec, depends on the selected suppliers and on the capacity
they can provide. More formally, constraints ec (

∑
s′∈Sc

xs′,c = ζc) are the
events whose reliability we wish to maximize, and in each scenario these
events are subject to certain pre-requisite constraints (

∑
c′∈Cs

xs,c′ ≤ ξs)
and certain conditions (xs,c 6= 0). Intuitively, if a pre-requisite is unsatisfied
in a scenario then the event is also classed as unsatisfied in that scenario;
and if a condition is unsatisfied in a scenario then the event is classed as
satisfied in that scenario.

3 Event-Driven Probabilistic Constraint Programming

In this section we formalise the EDP-CP modeling framework.

3.1 Preliminaries

Recall that a constraint satisfaction problem (CSP) consists of a set of vari-
ables X , each with a finite domain of values Di, and a set of constraints
C, each over a subset of X (denoted by Scope(C)) and specifying allowed
combinations of values for given subsets of variables. A solution is an as-
signment of values to the variables satisfying the constraints. A Constraint
Optimisation Problem (COP) is a CSP with given objective function over
a subset of X that we wish to maximize or minimize.

1 Note that in the general case customer demand ζc may also be a random
variable.
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Recall that a probabilistic CSP as introduced in [8] is defined as a 6-tuple
〈X ,D, Λ,W, C, Pr〉 where:

– X= {x1, . . . , xn} is a set of decision variables;
– D= D1 × . . .×Dn, where Di is the domain of xi;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W= W1 × . . .×Wl, where Wi the domain of λi;
– C is a set of (probabilistic) constraints each involving at least one deci-

sion variable (and possibly some uncertain parameters);
– Pr :W→ [0, 1] is a probability distribution over uncertain parameters.

In [8] a complete assignment of the uncertain parameters (resp. of the de-
cision variables) is called a world (resp. a decision). The probability that a
decision is a solution is the probability of the set of the worlds in which it
is a solution.

In its most general form, event-driven probabilistic CP supports un-
certain parameters as well as decision variables. A constraint is said to be
probabilistic, if it involves both decision variables and uncertain parameters.
In the rest of this paper we will sometimes refer to classical constraints as de-
terministic constraints to distinguish them from the probabilistic ones. We
will refer to the possible values of an uncertain parameter λi as W (λi) and
to the probability of λi taking a given value v in W (λi) as Pr(λi = v). As in
[8], we refer to a complete assignment of uncertain parameters as a possible
world and denote by W the set of all possible worlds. We also assume that
the probability of each possible world w is given by the probability function
Pr : W → [0, 1].

Definition 1 ([8]) Given a probabilistic constraint c over decision variables
and some uncertain parameters, the reduction of c by world w ∈ W, denoted
by c↓w, is the deterministic constraint obtained by setting all its uncertain
parameters as in w.

3.2 Modeling framework

In EDP-CP some of the constraints can be designated by the user as event
constraints. The user’s objective is to maximize his/her chances of realizing
these events. For instance, in our running example the user may consider the
customer demand constraints as events. The objective is then to construct
a plan satisfying customer demand constraints as far as possible.

The feasibility of certain event constraints depends on the satisfaction
of other constraints. For instance, having a plan that meets the customer
demands depends on whether or not the supply constraints are met with
such a plan. For this purpose we introduce a new meta-constraint (already
described in Section 2.6) useful for modeling such situations in our EDP-
CP framework, which we refer to as a dependency meta-constraint. We first
introduce the dependency constraint in the deterministic setting.
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Definition 2 Dependency(e, p, c) iff Scope(e)∩Scope(p) 6= ∅ & Scope(c)
⊆ Scope(e)∩Scope(p) & e∧(c ⇒ p), where e, p, and c are all deterministic
constraints.

The Dependency meta-constraint is satisfied if and only if e is satisfied
and, if c holds, p is satisfied. We refer to p as a pre-requisite constraint for
event constraint e, and c as a condition constraint for p. Note that by
definition, Dependency(e, p, c∨c′) is equivalent to Dependency(e, p, c) ∧
Dependency(e, p, c′), and similarly Dependency(e, p∧ p′, c) is equivalent
to Dependency(e, p, c) ∧ Dependency(e, p′, c).

We now introduce a measure for event realization in a deterministic
setting, and later generalize it to probabilistic events.

Definition 3 Given a deterministic event constraint e with Scope(e) =
{x1, . . . , xk}, an event realization measure E{e} on e is a mapping M from
D(x1) × . . . ×D(xk) into {0, 1} such that for all t ∈ D(x1) × . . . ×D(xk),
M(t) = 1 iff t satisfies all the Dependency constraints that have e as event
constraint argument.

Example 1 Given the meta-constraint Dependency(e, x1 ≤ 4, x2 6= 0), an
event realization measure on event constraint e : x1 + x2 = 8, denoted by
E{e}, takes value 1 only when the values v1 and v2 assigned to decision
variables x1 and x2 (resp.) sum to 8 and, if x2 is different than zero, x1 is
less or equal to 4, otherwise it takes value 0.

When the events are probabilistic constraints, the event realization mea-
sure is defined on the set of possible worlds as follows.

Definition 4 Given a probabilistic event constraint e with Scope(e) = {x1,
. . . , xk} and uncertain parameters Λ = {λ1, . . . , λl}, an event realization
measure E{e} on e is a mapping M from D(x1)× . . .×D(xk) into interval
[0, 1] such that

E{e} =
∑

w∈W (λ1)×...×W (λl)

Pr(w)E{e↓w}

Example 2 An event realization measure on probabilistic constraint e : x1 +
x2 ≤ ξ), where ξ is a discrete random variable assuming {6(0.2), 8(0.7), 11(0.1)},
is denoted by E{e} and takes the value 0.8 when x1 = 4 and x2 = 3, and
the value 0.1 when x1 = 6 and x2 = 3.

For convenience we shall only considered the “expectation operator” in
defining an event realization measure. However, any other relevant operator,
such as the nth moment generator [13], can be used instead.

The following example demonstrates the use of the Dependency meta-
constraint in a probabilistic setting.
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Example 3 In Figure 2 the event e1 is the demand constraint for the first
customer e1 : x1,1+x2,1 = 8, while the pre-requisite constraints are the prob-
abilistic supply constraints p1 : x1,1 + x1,2 ≤ ξ1, p2 : x2,1 + x2,2 + x2,3 ≤ ξ2,
and p3 : x3,2 +x3,3 ≤ ξ3. Now consider event e1. From the constraint scopes
we see that Scope(e1)∩Scope(p1) = {x1,1}, Scope(e1)∩Scope(p2) = {x2,1}
and Scope(e1)∩Scope(p3) = ∅, so e1 depends on p1 and p2, not p3. From the
problem semantics we should introduce the condition constraints c1 : x1,1 6=
0 and c2 : x2,1 6= 0, to express the fact that there is no dependency relation
between e1 and p1 if x1,1 = 0, and that there is no dependency relation be-
tween e1 and p2 if x2,1 = 0. Thus we write the dependency meta-constraints
Dependency(e1, p1, x1,1 6= 0) and Dependency(e1, p2, x2,1 6= 0).

Equipped with these concepts, we now define EDP-CP as follows.

Definition 5 An EDP-CP is a 9-tuple P = 〈X ,D,Λ,W, E , C,H, Ψ,Pr〉
where:

– X = {x1, . . . , xn} is a set of decision variables;
– D = D1 × . . .×Dn, where Di is the domain of Xi;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W= W1 × . . .×Wl, where Wi the domain of λi;
– E = {e1, . . . , em} is a set of event constraints. Each ei may either be

probabilistic (involving a subset of X and a subset of Λ) or deterministic
(involving only a subset of X );

– C = {c1, . . . , co} is a set of dependency meta-constraints. For each depen-
dency meta-constraint ci : Dependency(e, p, f) we have e ∈E, where p
may be either a probabilistic or a deterministic pre-requisite constraint,
and f is a deterministic condition constraint;

– H= {h1, . . . , hp} is a set of hard constraints. Each hi may either be
probabilistic (involving a subset of X and a subset of Λ) or deterministic
(involving only a subset of X );

– Ψ is any expression involving the event realization measures on the event
constraints in E;

– Pr : W → [0, 1] is a probability distribution over uncertain parameters.

In Figure 3 we show a modeling template for EDP-CP.

Example 4 The motivational example of Section 2 can be expressed as an
EDP-CP P = 〈X ,D,Λ,W, E , C,H, Ψ, Pr〉 where:

– X = {x1,1, x1,2, x2,1, x2,2, x2,3, x3,2, x3,3};
– D = [0..99]× [0..99]× [0..99];
– Λ = {ξ1, ξ2, ξ3};
– W = {3(0.3), 7(0.5), 12(0.2)}×{6(0.4), 7(0.2), 10(0.4)}×{3(0.3), 8(0.7)};
– E = {e1 : x1,1 + x2,1 = 8, e2 : x1,2 + x2,2 + x3,2 = 7, e3 : x2,3 + x3,3 = 4};
– C = {c1 : Dependency(e1, p1 : x1,1 + x1,2 ≤ ξ1, f1,1 : x1,1 6= 0),

c2 : Dependency(e1, p2 : x2,1 + x2,2 + x2,3 ≤ ξ2, f2,1 : x2,1 6= 0),
c3 : Dependency(e2, p1, f1,2 : x1,2 6= 0),
c4 : Dependency(e2, p2, f2,2 : x2,2 6= 0),



Event-Driven Probabilistic Constraint Programming 13

Maximize:
Ψ(E{e1}, . . . , E{em})

Given that:

dependency meta-constraint c1

. . .
dependency meta-constraint co

Subject to:

hard constraint h1

. . .
hard constraint hp

Fig. 3 An EDP-CP template

c5 : Dependency(e2, p3 : x3,2 + x3,3 ≤ ξ3, f3,2 : x3,2 6= 0),
c6 : Dependency(e3, p2, f2,3 : x2,3 6= 0),
c7 : Dependency(e3, p3, f3,3 : x3,3 6= 0)};

– H= {x1,1 ≥ 0, . . . , x3,3 ≥ 0};
– Ψ is E{e1}+ E{e2}+ E{e3};
– Pr(〈ξ1=3, ξ2=6, ξ3=3〉)=0.036, . . . , Pr(〈ξ1=12, ξ2=10, ξ3=8〉)=0.056.

Finally, we define optimal solutions to EDP-CPs as follows.

Definition 6 An optimal solution to an EDP-CP P = 〈X ,D,Λ,W, E , C,H,
Ψ, Pr〉 is any assignment S to the decision variables such that:

1. for each h ∈ H, for each w ∈ W, h↓wis satisfied; and
2. there exists no other assignment satisfying all the hard constraints with

a strictly better value for Ψ , according to the Dependency constraints
introduced in the model.

Note that when the total number of worlds is 1 with probability 1, the
event realization measure on c is the same as in the deterministic case.

4 Solution methods for EDP-CP

We now show how to map an EDP-CP P = 〈X ,D,Λ,W, E , C,H,Ψ , Pr〉 into
an equivalent classical COP P ′ = 〈X ′,D′, C′,Ψ ′〉.

4.1 Mapping variables and domains

Algorithm 1 shows how to create the decision variables in P ′ starting from
P, in two steps. The first step (Line 3) duplicates the decision variables in
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Algorithm 1: Variable-Mapping(X ,D,Λ,W, E , C):〈 X ′,D′ 〉
X ′ ← ∅;1

D′ ← ∅;2

foreach x ∈ X do3

create x′ with the same domain as x and add it to X ′ ;

foreach e ∈ E do4

foreach w ∈ W do
create a Boolean be

w and add it to X ′ ;

Algorithm 2: Constraint-Mapping(X ,D,Λ,W, E , C,H):C′
C′ ← ∅;1

foreach e ∈ E do2

foreach w ∈ W do

k ← e↓w ∧

 ∧
{Dependency(ε,p,c)∈C|ε=e}

(c ⇒ p↓w)


;

add be
w = 1 ↔ k to C′ ;

foreach h ∈ H do3

foreach w ∈ W do
add h↓w to C′ ;

P ′ along with their domains. The second step (Line 4) introduces a Boolean
variable that is used later to represent the truth value of each event e in
each possible world w.

4.2 Mapping constraints

Algorithm 2 shows how to create the constraints in P ′, again in two steps.
In step one (Line 2) we introduce a reification constraint for each event e in
each possible world w ∈ W . This ensures that be

w is assigned the value 1 iif
e↓w is satisfied and, for each Dependency(e, p, c) constraint involving event
e, if the given condition c is met, the respective prerequisite p↓w is satisfied.
In the second step (Line 3) each probabilistic constraint is transformed into
a set of deterministic constraints in C′.

4.3 Mapping the objective function

Finally, the objective function of P ′ is the same function Ψ as in P, except
that we replace each occurrence of an event measure E{e} with

∑

w∈W
Pr(w)be

w

as shown in Algorithm 3.
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Algorithm 3: Objective-Function-Mapping(X ,D,Λ,W, E , C,H, Ψ):Ψ ′

Ψ ′ ← Ψ ;1

foreach E{e} ∈ Ψ ′ do2

replace E{e} with
∑

w∈W Pr(w)be
w ;

5 Scenario Reduction

In the former section we showed how to compile any EDP-CP program in an
equivalent ordinary constraint program. Unfortunately the more scenarios
we consider the more decision variables need to be introduced in the model.
This may easily lead to large intractable problems when the number of
scenarios is high. In [26] the authors discuss several scenario sampling tech-
niques to cope with a similar problem arising in a scenario based approach
for stochastic constraint programming. The purpose of these techniques is
to replace a large intractable set of scenarios with a small tractable set so
that solving the problem over the small set yields a solution not much dif-
ferent than the solution over the large one. Obviously these technique may
also be applied to reduce the number of scenarios considered in EDP-CP.
The scenario reduction techniques presented are well known in statistics.
Typically they determine a subset of scenarios and a redistribution of prob-
abilities relative to the preserved scenarios. No requirements on the stochas-
tic data process are imposed and therefore the concept is general. However
the authors point out that, depending on their sophistication, the reduction
algorithms may require different types of data.

The simplest scenario reduction algorithm considers just a single scenario
in which stochastic variables take their expected values. This is called the
expected value problem. In what follows we recall one of the best sampling
methods for experimental design, that is Latin Hypercube Sampling (LHS)
[22]. This method ensures that a range of values for a variable are sampled.
Suppose we want the sample size to be n. We divide the unit interval into
n intervals, and sample a value for each stochastic variable exactly once.
More precisely, let fi(a) be the cumulative probability that Xi takes the
value a or less, Pi(j) be the jth element of a random permutation Pi of the
integers {0, . . . , n − 1}, and r be a random number uniformly drawn from
[0, 1]. Then the jth latin hypercube sample value for the random variable
Xi is:

f−1
i

(
Pi(j) + r

n

)
.

However it should be noted that the sample size n does not guarantee to
produce a sample of n scenarios, since a single scenario may be chosen more
than once due to, for example, the discreteness of the data.

Techniques like the one illustrated may be applied to reduce the number
of scenarios to a reasonable size so that the resulting reduced problem is a
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tractable one. An example of this will be presented in Section 6.2, where
LHS is applied to a probabilistic scheduling problem in order to reduce the
set of scenarios considered and preserve the quality of the solution provided
by the EDP-CP model described.

6 Illustrative examples

In this section we present three illustrative problems and model them us-
ing the EDP-CP framework. The first example is a probabilistic supply
chain planning problem, which is an extended version of the example of
Section 2. In this extended version, demand uncertainty, as well as supply
uncertainty, is considered. The second example is a probabilistic scheduling
problem which generalizes the one proposed in [12]. In this example task
durations are uncertain. The third example is a production planning prob-
lem with an emphasis on capital budgeting, and assumes that production
rates, demands, prices and costs are all uncertain parameters.

6.1 An EDP-CP Model for Probabilistic Supply Chain Planning

There is a sizeable literature on supply chain modeling under uncertainty
(see, for example, [7] and [23]). Recently, the authors of this work also
experienced at first-hand the relevance of modeling supply and demand
uncertainties during a research project carried out for a leading international
telecommunications company.

Here we adopt a simplified version of the problem, which was presented
in Section 2.1 and Figure 2. The objective is to determine the most reli-
able plan that will meet customers’ realised demands at D1,2,3 by means
of uncertain deliveries from suppliers denoted by S1,2,3. It is assumed that
(i) the order batch sizes xi,j from supplier i to customer j is not allowed
to exceed 6 units, xi ≤ 6, (ii) D3 requires that its order is supplied by only
one supplier, x2,3x3,3 = 0. Scenario parameters are given in Table 2. These
parameters can be obtained, for instance, through a sampling method like
LHS, which we presented in the former section. Excess supplies from sup-
pliers are stored at customers with a negligible inventory carrying cost until
the next order issue.

We consider two possible EDP-CP models for this probabilistic supply
chain problem. In the first one we try to find a solution in which all events
are realised, while in the second this condition is relaxed. The EDP-CP
model in Figure 4 describes the first case. The second case can be simply
achieved by dropping e1–e3 from the set of hard constraints.

The EDP-CP model is compiled into a standard CP model using the
algorithm presented in Section 4. The optimal solution is x1,1 =6, x1,2 =1,
x2,1 = 3, x2,2 = 4, x2,3 = 0, x3,2 = 2, x3,3 = 6. In the optimal plan E{e1}=
0.420, E{e2}=0.294 and E{e3}=0.700, giving an optimal objective func-
tion value of 1.414. In other words, this plan guarantees to meet customer
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Maximize:
E{e1 : x1,1 + x2,1 ≥ ζ1}+
E{e2 : x1,2 + x2,2 + x3,2 ≥ ζ2}+
E{e3 : x2,3 + x3,3 ≥ ζ3}

Given that:

Dependency(e1, p1 : x1,1 + x1,2 ≤ ξ1, f1,1 : x1,1 6= 0)
Dependency(e1, p2 : x2,1 + x2,2 + x2,3 ≤ ξ2, f2,1 : x2,1 6= 0)
Dependency(e2, p1, f1,2 : x1,2 6= 0)
Dependency(e2, p2, f2,2 : x2,2 6= 0)
Dependency(e2, p3 : x3,1 + x3,2 ≤ ξ3, f3,2 : x3,2 6= 0)
Dependency(e3, p2, f2,3 : x2,3 6= 0)
Dependency(e3, p3, f3,3 : x3,3 6= 0)

Subject to:

0 ≤ xi,j ≤ 6, ∀i, j ∈ {1, 2, 3}
x2,3.x3,3 = 0
ei, ∀i ∈ {1, 2, 3}
xi,j ∈ Z0,+

Fig. 4 An EDP-CP model for Probabilistic Supply Chain Planning
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w 10 11 12 13 14 15 16 17 18
S1 7 7 7 12 12 12 12 12 12
S2 7 10 10 6 6 7 7 10 10
S3 8 3 8 3 8 3 8 3 8
D1 9 9 9 8 8 8 7 7 7
D2 5 5 5 5 3 3 3 5 5
D3 6 6 4 4 6 6 4 4 6

Table 2 Scenario Data

demands at D1,2,3 with probabilities 42.0%, 29.4% and 70.0%, respectively.
This plan aims to satisfy customer demands completely.

In most circumstances it would be more realistic to assume that the
event constraints e1, e2, and e3 are not hard constraints and the expected
plan should not aim for a complete demand satisfaction. When we drop these
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hard event constraints, the following plan is optimal under such a relaxation:
x1,1 = 6, x1,2 = 0, x2,1 = 3, x2,2 = 3, x2,3 = 0, x3,2 = 2, x3,3 = 6. The event
constraint satisfaction probabilities are now E{e1}= 0.700, E{e2}= 0.476
and E{e3}=0.700, giving a total of 1.876.

A comparison of two plans shows that there are differences between
them at x1,2 and x2,2. It may not be immediately obvious why we change
x1,2 from 1 to 0, as in both plans the probability of acquiring the required
capacity at S1 (7 and 6, respectively) is 0.8. The explanation lies in the
probability distribution of the uncertain capacity of S2. Supplier S2 can
provide 6 units with a probability of 1.0, but not 7 units. The second plan
exploits this situation and aims for a partial satisfaction at D2 by providing
only 5 units. Thus there is no need for any delivery from S1 to D2. The
second plan has higher reliability at the expense of partial satisfaction at
D2. It should be noted that there are alternative optimal solutions to this
instance.

6.2 An EDP-CP Model for Scheduling

We consider a specific scheduling problem similar to the one considered by
Hooker et. al [11]. This scheduling problem was described in [12] and it
involves finding a least-cost schedule to process a set of orders I using a set
of dissimilar parallel machines M . Processing an order i ∈ I can only begin
after the release date ri and must be completed at the latest by the due
date di. Order i can be processed on any of the machines. The processing
cost and the processing time of order i ∈ I on machine m ∈ M are cim and
pim, respectively.

The model just described is fully deterministic, but we will now consider
a generalization of this problem to the case where some inputs are uncertain.
For convenience we will just consider uncertain processing times πim for
order i ∈ I on machine m ∈ M . Nevertheless it is easy to see that EDP-
CP can be also employed to model more complicated generalizations of this
problem where release dates and due dates are uncertain or processing costs
are uncertain.

Scheduling with uncertainty is a topic that has been explored in a variety
of fields including artificial intelligence, operations research, fault-tolerant
computing and systems. For surveys on the literature see Davenport and
Beck [6], Herroelen and Leus [10], and Bidot [2]. In Beck and Wilson [1]
a classification of possible approaches for scheduling under uncertainty is
summarized. They report three techniques that are usually employed to
face uncertainty. In redundancy-based techniques extra resources/time are
allocated to every task to cushion the impact of unexpected events during
execution. Probabilistic techniques instead tend to build a schedule that op-
timizes a measure of probabilistic performance, such as expected makespan
or expected weighted tardiness. Contingent and policy based approaches
typically generate a branching or contingent schedule or, in extreme cases,
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Maximize:∑
i∈I E{ei : si +

∑
m∈M πim ∗ δim ≤ di}

Given that:

Dependency(ei, sj ≥ si +
∑

m∈M πim ∗ δim, σij = 1), ∀i, j ∈ I, i 6= j

Subject to:

si ≥ ri,∀i ∈ I
σij = 1 ⇒ si < sj ,∀i, j ∈ I, i 6= j∑

m∈M δim = 1,∀i ∈ I
σij + σji ≥ δim + δjm − 1,∀m ∈ M, ∀i, j ∈ I, i 6= j
σij + σji ≤ 1,∀i, j ∈ I, i 6= j∑

i∈I

(∑
m∈M cim ∗ δim

) ≤ B

σij ∈ {0, 1},∀i, j ∈ I
δim ∈ {0, 1},∀i ∈ I, ∀m ∈ M
si ∈ [Ls, Le],∀i ∈ I

Fig. 5 An EDP-CP model for Scheduling

a policy, that specify a set of actions to be taken when a particular set of cir-
cumstances arises. Our EDP-CP approach can be classified as probabilistic
under a predefined policy.

Since EDP-CP is meant to model and optimize the reliability of a given
plan we will assume in our problem that a fixed budget B is given and
that our plan has to meet such a constraint on the costs. Therefore we will
no longer look for a least-cost plan, rather we will optimize a reliability
measure expressed in terms of events, as it is usual in EDP-CP. The specific
event whose probability we wish to maximize is the successful completion
of each job within the given time frame defined by its release and due date.
Since jobs are scheduled in sequence on each machine dependencies will
arise between subsequent jobs. We adopt a specific policy that unschedules
a job whether this is not processed within the given due date or before the
planned start time of the subsequent job on the respective machine. This
policy guarantees that every order will always start at the planned start
time, since the respective machine will be free and will start processing it.
More complicated EDP-CP models may also consider the case where we aim
to minimize total tardiness or total completion time of a given plan. In this
cases the realized processing time of an order may affect the scheduling time
of subsequent orders. We will not analyze these cases in this example. An
EDP-CP model for the problem described is given in Fig. 5. Let us analyze



20 S. A. Tarim et al.

w ∈ W 1 2 3 4 5 6
Pr{w} 0.1 0.1 0.05 0.1 0.05 0.2
m ∈ M M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

i ∈ I

1 10 14 9 15 11 13 9 14 9 15 11 13
2 6 8 5 9 7 7 7 8 5 9 7 12
3 11 16 10 18 12 15 4 16 10 18 14 15
4 7 9 6 10 8 8 8 9 6 10 8 8
5 12 17 11 18 13 16 12 17 4 18 13 16

w ∈ W 7 8 9 10 11 12
Pr{w} 0.05 0.05 0.1 0.05 0.05 0.1
m ∈ M M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

i ∈ I

1 10 14 9 15 11 13 10 14 9 15 11 13
2 6 8 15 9 7 7 16 8 5 9 7 7
3 16 16 10 18 10 15 11 16 10 18 12 15
4 7 9 6 10 8 8 17 9 6 10 8 8
5 12 17 11 18 13 16 12 17 11 18 13 6

Table 3 Order processing times

the given model. The objective function maximizes the expected number of
tasks completed by the respective due dates. Dependency constraint states
that, when two jobs i, j are executed in sequence on the same machine
(condition σij = 1), job i has to be completed by its due date (event ei

is satisfied) and before the start time of job j (pre-requisite sj ≥ si +∑
m∈M πim ∗ δim). The hard constraints respectively state that: the start

time of job i, si, must be no less than the release time ri for this job; if two
jobs i, j are processed on the same machine m and i is processed before j
then the start time of i, si, must be less than the start time of j, sj ; each
job must be processed on a machine; if two jobs i, j are processed on the
same machine m, either i is processed before j, σij = 1, or j is processed
before i, σji = 1; the processing costs must be no greater than the given
budget B.

We now consider an instance of this problem. We consider 5 orders
{I1, . . . , I5} on 2 parallel machines {M1,M2}. The uncertain processing
times of each order on each machine are shown in Table 3. The release
dates for the orders are [2, 4, 6, 8, 10]. The due dates are [16, 13, 30, 41, 35].
The costs for processing orders on machine M1 are [10, 8, 12, 11, 9], and on
machine M2 they are [16, 5, 17, 9, 4]. The given budget B is 40.

We define
Ls = min

i∈I
ri

and
Le = Ls + min

m∈M

∑

i∈I

dπime

where dπime is the maximum duration of order i ∈ I on machine m ∈ M
for every possible world w ∈ W . Therefore

dπime = max
w∈W

πim.

In order to solve the proposed scheduling problem we compiled the EDP-
CP model into a standard constraint program as described in Section 4.
This constraint program was solved using OPL Studio 3.7 on an Intel(R)
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w ∈ W 2 6 7 10
Pr{w} 0.25 0.25 0.25 0.25
m ∈ M M1 M2 M1 M2 M1 M2 M1 M2

i ∈ I

1 9 15 11 13 10 14 10 14
2 5 9 7 12 6 8 16 8
3 10 18 14 15 16 16 11 16
4 6 10 8 8 7 9 17 9
5 11 18 13 16 12 17 12 17

Table 4 Order processing times, LHS with 4 samples

w ∈ W 3 11
Pr{w} 0.5 0.5
m ∈ M M1 M2 M1 M2

i ∈ I

1 11 13 9 15
2 7 7 5 9
3 12 15 10 18
4 8 8 6 10
5 13 16 11 18

Table 5 Order processing times, LHS with 2 samples

Centrino(TM) CPU 1.50GHz with 2Gb RAM. We chose the provided di-
chotomic strategy and depth-bounded discrepancy search procedure.

An optimal solution for the given instance was found in 6.97 seconds,
it has a cost of 40 and an overall reliability measure of 4.8, which means
that in our plan 4.8 orders over 5 will be, in the average case, processed
within the required due date and before the next order scheduled on the
same machine. More specifically, the realization measures for each event
constraint are: E{e1} = 100%, E{e2} = 80%, E{e3} = 100%, E{e4} =
100% and E{e5} = 100%. The optimal plan assigns orders {1, 3} to M1 and
orders {2, 4, 5} to M2. The start times for the orders are [2, 4, 13, 31, 13].

In order to reduce the size of the model input we will now perform a
LHS on the original problem instance presented in Table 3. The original
12 scenarios are then reduced to only 4 sampled scenarios. The reduced
instance is presented in Table 4. The optimal solution for the LHS reduced
instance was found in 2.08 seconds, it has a cost of 40 and an overall re-
liability measure of 4.8. More specifically, the optimal plan assigns orders
{1, 3} to M1 and orders {2, 4, 5} to M2. The start times for the orders are
[2, 4, 13, 31, 13]. This is the same optimal plan found for the original problem
with 12 scenarios.

We now reduce the number of scenarios to only 2 samples as shown in
Table 5. The optimal solution was found in only 0.72 seconds and also in
this case it corresponds to the same optimal plan described above.

We finally solved the expected value problem in which the random or-
der processing times are replaced with their expected values. The expected
times for processing orders on machine M1 are [10, 7, 11, 8, 12], and on ma-
chine M2 they are [14, 9, 16, 9, 16]. The optimal solution for the expected
value problem was found in 0.25 seconds, it has a cost of 40 and an overall
reliability measure of 3.55. More specifically, the optimal plan assigns orders
{1, 3} to M1 and orders {2, 4, 5} to M2. The start times for the orders are
[2, 4, 12, 32, 16]. This plan is 26.04% less reliable than the previous ones.
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As this simple example demonstrates, the expected value approach to
probabilistic problems may produce solutions which are far from being close
to the optimal solutions, while a sampling approach usually brings benefits
in terms of processing time without sacrificing too much the optimality of
the solution produced.

6.3 An EDP-CP Model for Production Planning/Capital Budgeting

In this section, a production planning problem with an emphasis on capital
budgeting is used to demonstrate the flexibility of the proposed modeling
framework in dealing with uncertainties.

The production planning/capital budgeting problem assumes that there
are n = 7 types of products to be produced, under uncertain demands di, i =
1, ..., 7. Each product can be produced on only one type of machine which is
assigned to this product only. The existing production floor space is A = 50
m2, in which each machine type requires mi (m = [3, 6, 5, 3, 7, 8, 9]) in m2

per machine of type i. The cost of operating each machine involves two types
of costs: fixed cost fi (f = [40, 75, 62, 39, 53, 19, 38]) and variable production
cost ci. The total production budget is B = $670. The variable production
cost components c1,...,7 are uncertain, taking different values in each world
w1,...,4 (see Table 6). The produced amount of each product depends on
the number of machines used, xi, and the uncertain machine production
rate, ri, is also given in Table 6. Table 6 shows two more uncertain problem
parameters: demand di and selling price pi.

Under these uncertainties, a realistic objective is to determine the most
reliable plan (i.e. how many machines to purchase of each type) that maxi-
mizes our chances of meeting our demand constraints as much as possible,
while achieving a specified target profit of T = $40, not exceeding our
budget B, and meeting all space and production constraints. It is assumed
that meeting customer demands and the profit target are equally important
events.

In specific solution/plans, depending on unfolding of uncertainties, the
budget constraint may hold, as well as demand and target profit objectives.
It should be noted that it is not generally possible to find a solution which
always satisfies all the constraints. For that reason, the problem addressed
here is very different from the well-established techniques dealing with un-
certainty.

An EDP-CP model of the production planning/capital budgeting prob-
lem is shown in Figure 6, where rixi and min(rixi, di) denote the amount
produced and sold, respectively, of product type i ∈ {1, ..., n}, and xi de-
notes the number of machine used in the production of type i product.
There is only one pre-requisite constraint (the budget constraint) and no
condition constraint.

The optimal solution found is x∗ = [2, 0, 2, 0, 0, 2, 2]. This production
plan gives E{e1} = 100%, E{e2} = 0, E{e3} = 73%, E{e4} = 0, E{e5} =
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production cost demand
w Pr c1 c2 c3 c4 c5 c6 c7 d1 d2 d3 d4 d5 d6 d7
1 0.16 3 6 1 1 6 10 2 4 7 2 8 3 5 2
2 0.19 4 4 7 2 4 7 7 7 9 9 9 4 7 4
3 0.38 5 3 5 8 7 6 10 9 11 12 10 7 8 7
4 0.27 5 6 8 5 5 3 6 11 13 17 11 13 16 13

selling price production rate
w Pr p1 p2 p3 p4 p5 p6 p7 r1 r2 r3 r4 r5 r6 r7
1 0.16 8 14 4 16 14 10 4 2 3 2 1 2 1 2
2 0.19 10 16 18 18 10 14 14 4 4 5 2 4 3 6
3 0.38 18 22 14 18 14 16 24 5 5 6 3 5 5 4
4 0.27 22 26 26 22 16 24 18 9 6 8 4 7 7 7

Table 6 Problem Data

Maximize:
1
2n

∑n
i=1 E{ei : min(rixi, di) = di}+

1
2
E{ē :

∑n
i=1 pi min(rixi, di)− fixi − cirixi ≥ T}

Given that:

Dependency(ej ,
∑n

i=1(fi + ciri)xi ≤ B, True), ∀j ∈ {1, . . . , n}
Dependency(ē,

∑n
i=1(fi + ciri)xi ≤ B, True)

Subject to:

∑n
i=1 mixi ≤ A

xi ∈ Z0,+

Fig. 6 An EDP-CP model for Production Planning/Capital Budgeting

0, E{e6} = 38%, E{e7} = 100%, where event constraint ei denotes the
complete satisfaction of demand for product type i. In this plan the profit
target is achieved E{ē} = 65% of the time.

We also solved the expected value problem in which the random variables
production cost, demand, selling price and production rate are replaced with
their expected values. The expected value data used in the deterministic
problem are given in Table 7.

product type 1 2 3 4 5 6 7

production cost 4.49 4.48 5.55 4.93 5.73 6.02 7.07
demand 8.36 10.52 11.18 9.76 7.41 9.49 7.25
selling price 15.96 20.66 16.40 18.76 13.78 16.82 17.28
production rate 5.41 4.76 5.71 2.76 4.87 4.52 4.87

Table 7 Expected Value Problem Data
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The solution to this resultant deterministic problem is x∗ = [2, 0, 0, 4, 2, 0, 2].
We used this plan in the original probabilistic setting to evaluate the quality
of the expected value solution. The expected value solution gives E{e1} =
35%, E{e2} = 0, E{e3} = 0%, E{e4} = 0, E{e5} = 35, E{e6} = 0%,
E{e7} = 35%, where event constraint ei denotes the complete satisfaction
of demand for product type i. It is not possible to achieve the profit target
under any scenario using this plan; in other words, E{ē} = 0%.

Also in this case the expected value approach to probabilistic problems
produces a solution which is far from being close to the optimal one.

7 Related works

The EDP-CP framework we present is a generalization of the work of Liu
[20] on dependent-chance programming. Firstly, our notion of constraint
dependency introduces condition constraints in addition to the event and
pre-requisite constraints. It should be noted that constraint dependency
without condition constraints does not guarantee optimal plans since in
certain instances common variables may take values which break the link
between two dependent constraints. Secondly, while a feasible solution in
Liu’s framework satisfies all event constraints, in our framework such a
requirement is relaxed, and this gives the decision-maker more flexibility
in modeling. Finally, while Liu’s work only considers Monte Carlo-based
simulation methods, we propose a complete solution method.

EDP-CP is also related to the probabilistic CSP framework [8]. However,
probabilistic CSP treats all probabilistic constraints uniformly, whereas
EDP-CP distinguishes between event, pre-requisite, condition, and hard
constraints. For instance, in probabilistic CSP, all customer and demand
constraints will be treated in the same way. In a given world, either all
constraints are satisfied or the problem is over-constrained. While finding a
plan that has the highest probability of success is an interesting objective,
our approach answers different questions and achieves different objectives.

It should also be noted that, when all the constraints are deterministic,
our EDP-CP framework is closely related to Partial CSPs [9]. Partial CSPs
can be divided into two main categories: The Minimal Violation Problem
and the Maximal Utility Problem. In the first case the goal is to find a
solution which satisfies as many constraints as possible (e.g. Soft CSPs [4]) or
equivalently to minimise the number of violated constraints. In the Maximal
Utility Problem the objective is to find a partial solution, which violates
none of the constraints where a partial solution is an assignment in which
not all variables are assigned a value. In our approach we also find partial
solutions, but instead of treating all constraints equally we have shown that
we can obtain partial assignments that satisfy as many event constraints
as possible according to the given probability distributions for the random
variables and to the dependencies that have been modeled. Partial CSPs do
not explicitly model high level concepts such as probability distributions,
event, pre-requisite, condition, and hard constraints.
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Another technique addressing constraint problems under uncertainty
is Stochastic Constraint Programming (SCP) [25]. The SCP approach as-
sumes that the constraints are stochastically independent (i.e., there are no
Dependency constraints among them). Thus SCP addresses a completely
different class of stochastic problems.

8 Conclusion

In this paper we propose EDP-CP as a novel modeling framework that helps
decision makers in uncertain environments to realistically model their prob-
lems and find reliable solutions. The characteristic features of our modeling
framework can be summarized as follows:
– To better model the uncertainties in real-world problems, we allow the

set of constraints to be either deterministic or probabilistic;
– We move away from classical approaches that treat all constraints uni-

formly to one that distinguishes between event, pre-requisite, condition,
and hard constraints;

– We introduce the Dependency meta-constraint that allows the mod-
eler to state a problem by explicitly specifying dependency relationships
between event, pre-requisite, and condition constraints;

– In an uncertain environment, it is quite unrealistic to assume that a so-
lution is valid irrespective of the unfolding of the uncertain parameters.
In fact, there is a certain degree of fuzziness associated with each can-
didate solution. Therefore, in our framework, we view the set of feasible
solutions as probabilistic due to the inherent uncertainties;

– We introduce an event realization measure, which can be used by the
modeler to define solution reliability.
Our future work will extend the proposed framework in various direc-

tions, and provide efficient and effective solving methods. Our first steps
will be:
– The development of specialized solution methods for EDC-CP. For in-

stance a specialized global constraint for the Dependency meta-constraint
can be designed.

– In large-scale uncertain problems, the number of worlds can be pro-
hibitively large. We proposed a well-known scenario reduction technique
that may help to reduce the number of scenarios considered. However
we will investigate further ways of reducing the number of world as well
as employing effective decomposition techniques;

– We will look at ways of extending EDP-CP to deal with recourse actions.
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