1,160 research outputs found

    Acorn Poisoning in Cattle

    Get PDF
    During the month of October reports of acorn poisoning have been widespread through Iowa and neighboring states. Representative animals from some herds were presented to the clinic. Other herds were described by practitioners in telephone conversations. When the first cases were encountered there was understandable hesitation in making the diagnosis since the problem was occurring on pastures that had been supporting trouble free grazing for years. As evidence continued to mount, however, it appeared that the heavy acorn production, together with abundant rainfall, may have resulted in an unusual problem this year

    Phosphate bonding in refractories

    Get PDF
    Thesis (Sc.D.) Massachusetts Institute of Technology. Dept. of Metallurgy, 1950Bibliography: leaves 81-86.by Wm. David Kingery.Sc.D

    The Status of NASA's Wide-Field Meteor Camera Network and Preliminary Results

    Get PDF
    NASA's Meteoroid Environment Office (MEO) recently established two wide-field cameras to detect meteors in the millimeter-size-range. This paper outlines the concepts of the system, the hardware and software, and results of 3,440 orbits seen from December 13, 2012 until May 14, 2014

    When the Sky Falls NASA's Response to Bright Bolide Events Over Continental USA

    Get PDF
    Being the only U.S. Government entity charged with monitoring the meteor environment, the Meteoroid Environment Office (MEO) has deployed a network of allsky and wide field meteor cameras, along with the appropriate software tools to quickly analyze data from these systems. However, the coverage of this network is still quite limited, forcing the incorporation of data from other cameras posted to the internet in analyzing many of the fireballs reported by the public and media. Information on these bright events often needs to be reported to NASA Headquarters by noon the following day; thus a procedure has been developed that determines the analysis process for a given fireball event based on the types and amount of data available. The differences between these analysis processes are shown by looking at four meteor events that the MEO responded to, all of which were large enough to produce meteorites

    Allylic Amination and Carbon–carbon Double Bond Transposition Catalyzed by Cobalt(II) azodioxide Complexes

    Get PDF
    The unusual cobalt(II) diphenylazodioxide complex salts [Co(az)4](PF6)2 and [Co(bpy)(az)2](PF6)2 have been shown to catalyze the allylic amination/C–C double bond transposition reaction of 2-methyl-2-pentene with PhNHOH, with a turnover number of about 4. The mechanism is proposed to involve a nitroso-ene-like transfer of a PhNO moiety from the azodioxide ligand to the alkene, followed by reduction of the organic product to yield a cobalt(III) intermediate, which is itself reduced back to cobalt(II) by PhNHOH, regenerating PhNO. Hetero-Diels-Alder trapping experiments suggest that an “off-metal” mechanism, in which PhNO is released from the cobalt complexes and reacts with the alkenes, is operative, in contrast to an “on-metal” mechanism observed by Nicholas and coworkers for [Fe(az)3](FeCl4)2

    Automated Optical Meteor Fluxes and Preliminary Results of Major Showers

    Get PDF
    NASA's Meteoroid Environment Office (MEO) recently established a twostation system to calculate daily automated meteor fluxes in the millimetersizerange for both singlestation and doublestation meteors. The cameras each consist of a 17 mm focal length Schneider lens (f/0.95) on a Watec 902H2 Ultimate CCD video camera, producing a 21.7x15.5 degree field of view. This configuration sees meteors down to a magnitude of +6. This paper outlines the concepts of the system, the hardware and software, and results of 3,000+ orbits from the first 18 months of operations. Video from the cameras are run through ASGARD (All Sky and Guided Automatic Realtime Detection), which performs the meteor detection/photometry, and invokes MILIG and MORB (Borovicka 1990) codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for approximate shower identification in singlestation detections. The ASGARD output is used in routines to calculate the flux. Before a flux can be calculated, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting stellar magnitude is found using astrometry.net (Lang et al. 2012) to identify stars and translated to the corresponding shower and sporadic limiting meteor magnitude. It is found every 10 minutes and is able to react to quickly changing sky conditions. The extensive testing of these results on the Geminids and Eta Aquariids is shown. The flux involves dividing the number of meteors by the collecting area of the system, over the time interval for which that collecting area is valid. The flux algorithm employed here differs from others currently in use in that it does not make the gross oversimplication of choosing a single height to calculate the collection area of the system. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the active shower or sporadic source radiant. The flux per height interval is calculated and summed to obtain the total meteor flux. Both single station and double station fluxes are currently found daily. Geminid fluxes on the peak night in 2012 (12142012) were 0.058 meteors/km2/hr as found with doublestation meteors and 0.057 meteors/ km2/hr as found with singlestation meteors, to a limiting magnitude of +6.5. Both of those numbers are in agreement with the wellcalibrated fluxes from the Canadian Meteor Orbit Radar. Along with flux algorithms and initial flux results, presented will be results from the first 18 months of operation, covering 3,000+ meteoroid orbits

    The Meteoroid Fluence at Mars Due to Comet C/2013 A1 (Siding Spring)

    Get PDF
    Long-period comet C/2013 A1 (Siding Spring) will experience a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comet's coma may envelop Mars and its man-made satellites. By the time of the close encounter, five operational spacecraft will be present near Mars. Characterizing the coma is crucial for assessing the risk posed to these satellites by meteoroid impacts. We present an analytic model of cometary comae that describes the spatial and size distributions of cometary dust and meteoroids. This model correctly reproduces, to within an order of magnitude, the number of impacts recorded by Giotto near 1P/Halley [1] and by Stardust near comet 81P/Wild 2 [2]. Applied to Siding Spring, our model predicts a total particle fluence near Mars of 0.02 particles per square meter. In order to determine the degree to which Siding Spring's coma deviates from a sphere, we perform numerical simulations which take into account both gravitational effects and radiative forces. We take the entire dust component of the coma and tail continuum into account by simulating the ejection and evolution of dust particles from comet Siding Spring. The total number of particles simulated is essentially a free parameter and does not provide a check on the total fluence. Instead, these simulations illustrate the degree to which the coma of Siding Spring deviates from the perfect sphere described by our analytic model (see Figure). We conclude that our analytic model sacrifices less than an order of magnitude in accuracy by neglecting particle dynamics and radiation pressure and is thus adequate for order-of-magnitude fluence estimates. Comet properties may change unpredictably and therefore an analytic coma model that enables quick recalculation of the meteoroid fluence is highly desirable. NASA's Meteoroid Environment Office is monitoring comet Siding Spring and taking measurements of cometary brightness and dust production. We will discuss our coma model and nominal fluence taking the latest observations into account

    Replicating Nanostructures on Silicon by Low Energy Ion Beams

    Get PDF
    We report on a nanoscale patterning method on Si substrates using self-assembled metal islands and low-energy ion-beam irradiation. The Si nanostructures produced on the Si substrate have a one-to-one correspondence with the self-assembled metal (Ag, Au, Pt) nanoislands initially grown on the substrate. The surface morphology and the structure of the irradiated surface were studied by high-resolution transmission electron microscopy (HRTEM). TEM images of ion-beam irradiated samples show the formation of sawtooth-like structures on Si. Removing metal islands and the ion-beam induced amorphous Si by etching, we obtain a crystalline nanostructure of Si. The smallest structures emit red light when exposed to a UV light. The size of the nanostructures on Si is governed by the size of the self-assembled metal nanoparticles grown on the substrate for this replica nanopatterning. The method can easily be extended for tuning the size of the Si nanostructures by the proper choice of the metal nanoparticles and the ion energy in ion-irradiation. It is suggested that off-normal irradiation can also be used for tuning the size of the nanostructures.Comment: 12 pages, 7 figures, regular paper submitted to Nanotechnolog

    Optical and Radar Measurements of the Meteor Speed Distribution

    Get PDF
    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models

    Developmentally Sensitive Implementation of Core Elements of Evidence-Based Treatments: Practical Strategies for Youth With Internalizing Disorders

    Get PDF
    MANY TREATMENT APPROACHES for psychological disorders among children and adolescents are downward extensions of adult treatment models. According to Barrett (2000), when treatments for childhood disorders are based on cognitive behavioral models of adult disorders, clinicians may make inaccurate assumptions, such as viewing children as “little adults,” thereby failing to adjust treatment terminology for children and ignoring contextual factors such as families and peers. Subscribing to adult models may also result in a lack of awareness of research findings in the field of developmental psychology (e.g., cognitive abilities, social skills, emotion regulation) and, consequently, implementation of treatment strategies in a similar manner across levels of development (e.g., assuming all children possess the same level of meta-cognitive skills). As Kingery and colleagues (2006) emphasize, simply utilizing a treatment that has been developed for youth is not sufficient. Particularly when implementing manual-based CBT for youth with internalizing disorders, clinicians must be knowledgeable, creative, and flexible, taking each child’s individual cognitive, social, and emotional skills into consideration to provide the most developmentally appropriate intervention
    • …
    corecore