10 research outputs found

    Analiza wpływu rozlewu olejowego na skuteczność poszukiwań w trakcie akcji SAR z wykorzystaniem symulatorów SARMAP i OILMAP

    No full text
    Tyt. z nagłówka.Bibliogr. s. [242].Dostępny również w formie drukowanej.STRESZCZENIE: Niniejsze opracowanie rozważa poszukiwanie człowieka i tratwy ratowniczej w miejscu rozlewu olejowego przy użyciu helikoptera Anakonda, samolotu M-28 X2 oraz statku Kapitan Poinc. Wyniki badań prezentują trajektorię ruchu plamy olejowej, trajektorię ruchu rozbitka ubranego w kombinezon ochrony termicznej i tratwy ratunkowej dla dwóch sytuacji hydrometeorologicznych. Poszukiwania wyżej wymienionych środków ratunkowych odbywają się wg schematów IAMSAR a wyniki poszukiwań przedstawione są w postaci prawdopodobieństwa sukcesu (POS [%]) opartego na prawdopodobieństwie wykrycia rozbitka/tratwy podczas przejazdu po ustalonej trasie oraz prawdopodobieństwie znalezienia się rozbitka/tratwy w wyznaczonym obszarze poszukiwań. SŁOWA KLUCZOWE: poszukiwanie i ratownictwo, sar, rozlew olejowy. ABSTRACT: This paper considers the human search and rescue raft search in the place of oil spill using the Anaconda helicopter, aircraft M-28 X2 and the ship Captain Poinc. Results represent the trajectory of movement of oil slick, the trajectory of motion of surviver dressed in survival suit and life raft for two hydrometeorological situation. The search for life-saving measures mentioned above are held by schemes IAMSAR. Search results are presented in the form of the probability of success (POS [%]) based on the propability of detection and probability of containment. KEYWORDS: SAR, oil spill, search and rescue

    The Model of Optimal Allocation of Maritime Oil Spill Combat Ships

    No full text
    The paper describes a two-stage method for optimizing the location of marine oil spill combat forces and assessing the costs related to this action at the sea. An optimization problem relates to positioning the oil pollution combat ships in ports in such a way that they are able combat the anticipated number of oil spills in certain positions in the Polish coast of the Baltic Sea area in the shortest possible time. The problem was classified as NP-hard; therefore, in the first stage, an evolutionary algorithm was applied. The main output of the model based on the evolutionary algorithm is the time of arrival of combat ships from the port to the oil spill area, as well as the costs of such operation; this is defined as the aim function. The first stage of the model does not simulate combat pollution action; therefore, the results obtained were treated as approximate. In the second stage, the several best allocations of oil spill response resources obtained in the first stage were used as input to a detailed simulation model of combat action. For each chosen allocation, a number of oil combat action simulations were carried out. The model can be used to create and verify oil pollution contingency plans, and finally increase the sustainability of sea and coastal areas

    The model of optimal allocation of maritime oil spill combat ships

    Full text link
    The paper describes a two-stage method for optimizing the location of marine oil spill combat forces and assessing the costs related to this action at the sea. An optimization problem relates to positioning the oil pollution combat ships in ports in such a way that they are able combat the anticipated number of oil spills in certain positions in the Polish coast of the Baltic Sea area in the shortest possible time. The problem was classified as NP-hardtherefore, in the first stage, an evolutionary algorithm was applied. The main output of the model based on the evolutionary algorithm is the time of arrival of combat ships from the port to the oil spill area, as well as the costs of such operationthis is defined as the aim function. The first stage of the model does not simulate combat pollution actiontherefore, the results obtained were treated as approximate. In the second stage, the several best allocations of oil spill response resources obtained in the first stage were used as input to a detailed simulation model of combat action. For each chosen allocation, a number of oil combat action simulations were carried out. The model can be used to create and verify oil pollution contingency plans, and finally increase the sustainability of sea and coastal areas

    The Model of Optimal Allocation of Maritime Oil Spill Combat Ships

    No full text
    The paper describes a two-stage method for optimizing the location of marine oil spill combat forces and assessing the costs related to this action at the sea. An optimization problem relates to positioning the oil pollution combat ships in ports in such a way that they are able combat the anticipated number of oil spills in certain positions in the Polish coast of the Baltic Sea area in the shortest possible time. The problem was classified as NP-hard; therefore, in the first stage, an evolutionary algorithm was applied. The main output of the model based on the evolutionary algorithm is the time of arrival of combat ships from the port to the oil spill area, as well as the costs of such operation; this is defined as the aim function. The first stage of the model does not simulate combat pollution action; therefore, the results obtained were treated as approximate. In the second stage, the several best allocations of oil spill response resources obtained in the first stage were used as input to a detailed simulation model of combat action. For each chosen allocation, a number of oil combat action simulations were carried out. The model can be used to create and verify oil pollution contingency plans, and finally increase the sustainability of sea and coastal areas

    Cost-Effective Design of Port Approaches Using Simulation Methods Based on the Example of a Modernized Port in the Ustka

    No full text
    Port design and approaches are usually carried out using real-time computer simulation methods for ship manoeuvring. So-called ship real-time simulation methods are relatively expensive, especially in terms of survey time. Several real-time simulation scenarios carried out by masters and pilots are usually performed, with several simulation attempts in each scenario. Each such attempt can last up to one hour, which, with a large number of scenarios, prolongs the research and increases its cost. Particularly time-consuming is the repetition of many scenarios with alternative solutions for infrastructure development and in various hydrometeorological conditions. To reduce the time-consuming of the tests, a new two-stage method was used to design the target approach on the modernized Port of Ustka. In the first stage, the simulations were carried out with significantly reduced floating navigation marking, and in the second stage with the target marking. Moreover, the so-called “Soft-Bank” method was introduced, i.e., the effects of a collision with the seabed and infrastructure were excluded. Such a solution leads to significant time benefits in conducting research and at the same time does not reduce confidence in the results obtained

    Risk assessment of moored and passing ships

    Full text link
    Accidents in port areas are generally relatively minor given the lower prevailing speeds, but dangerous cargo terminals located in the vicinity of populated areas present some risk of accidents with catastrophic consequences. The maritime risk assessment frameworks have been developed in many ports, but few include studies incorporating collisions between sailing and moored ships. This paper presents the risk assessment framework for such accidents. Moreover, it presents the important role of harbour regulations in the navigation risk management process within the port area. Today’s port regulations are created mostly based on the good practice of pilots and other experts, whereas quantitative methods are used less frequently. The intention of the presented case study was to demonstrate how quantitative risk assessment may be used in port policy development, which is why the method created is general and may be used in any terminal with dangerous cargo. The multi-stage method consists of several steps that make up a complex methodology, consisting of expert study, real-time simulation—a simulation of a collision in port is presented—and analytical-empirical calculations for consequence assessment. The case studies of the developed method are presented based on two real accidents, one in the Police port along the Świnoujście-Szczecin waterway, and the second in the Port of Koper in Slovenia. The results of this study present the parameters of the ship’s safe approach to the terminal area, such as velocity and approaching angle. These parameters are used to calculate the impact forces in the case of a collision between a moored and passing ship and its consequences on ship integrity as well as on mooring arrangement. Based on probability and consequences, the risk is evaluated and discussed in the sense of port safety. The presented method could be used as the framework for risk assessment of collisions in a port area, particularly when dealing with dangerous cargo or sensitive vessels such as cruise ships

    Reconstructing maritime incidents and accidents using causal models for safety improvement

    Full text link
    No advance in navigation has yet to prevent the occurrence of accidents (incidents are always implied when we discuss accidents) at sea. At the same time, advances in accident models are possible, and may provide the basis for investigations and analyses to help prevent future adverse events and improve the safety of marine transport systems. In such complex socio-technical systems models that treat accidents as the result of a chain or sequence of events are used most commonly. Such models are well suited to damage caused by failure of physical components in relatively simple systems. Although these often include methods for modeling human error, they do not cover broader aspects related to the management of the organization using the means of transport itself (shipowners) nor errors that may occur in the design phase. In particular, they do not cover changes in the systems over time. The paper presents accident investigation approaches and uses a modified causal model to analyze an incident that occurred in January 2019 on the city ferry in Świnoujście. The results of the analysis were used to provide guidelines for increasing safety at the crossing and to evaluate the accident analysis model used. Additionally, incidentally, through the study of this case we uncovered a problem in communication among stakeholders that unnecessarily complicates the models for the improvement of safety

    Modeling of vessel traffic flow for waterway design–port of Świnoujście case study

    Full text link
    The paper presents an analysis of ship traffic using the port of Świnoujście and the problems associated with modelling vessel traffic flows. Navigation patterns were studied using the Automatic Identification System (AIS)an analysis of vessel traffic was performed with statistical methods using historical dataand the paper presents probabilistic models of the spatial distribution of vessel traffic and its parameters. The factors that influence the spatial distribution were considered to be the types of vessels, dimensions, and distances to hazards. The results show a correlation between the standard deviation of the traffic flow, the vessel sizes, and the distance to the hazard. These can be used in practice to determine the safety of navigation and the design of non-existing waterways and to create a general model of vessel traffic flow. The creation of the practical applications is intended to improve navigation efficiency, safety, and risk analysis in any particular area

    Towards generalized ship's manoeuvre models based on real time simulation results in port approach areas

    No full text
    This paper presents an attempts towards creation of generalized models of ships manoeuvring area determination and ship performance created on the base of real simulation results. Those models are needed for better understanding of the safe navigation process in ports areas and its approaches and for risk analysis when no full information about the ships behaviour is available. The data coming from real time ship simulations that are conducted by experienced pilots and captains are applied in the study. In the first step, general regression models are created to determine manoeuvring areas and major correlations between basic parameters affecting the safe area needed for ships to navigate in restricted areas of ports and its approaches. In the second step, the ship performance models are created to describe the behaviour of the ship including human factors. The ship performance for long-term prediction of the navigation risk regarding the possibility of ships exceeding the channel limits, assumed as grounding or collision with a fixed structure are created by the method which consists of two developed models: (1) an ARMAX (Auto Regressive and Moving Average eXogenous) model is adopted to identify the ship steering dynamic system. With the help of this model, the outputs of the system (course, position, etc.) can be estimated based on the system input conditions (rudder, engine, etc.); (2) the stochastic sequences of the inputs for the first model used are generated using a semi-Markov model. In the paper the implementation of the semi-Markov model for rudder actions has been described. The study used input/output measurements from a ship-handling simulator to estimate the model parameters, so the human factor has been included in the models. The method allows us to extend the results obtained from the simulator to predict future conditions of the system outputs. Since the predicted results and using probabilistic approach, possible ship manoeuvring area margins will be identified and long - term assessment of the navigation risk can be realized.Hydraulic Structures and Flood RiskSafety and Security Scienc
    corecore