876 research outputs found

    Form Over Substance: Learning Objectives In The Business Core

    Get PDF
    While members of the business faculty community have been advocating active learning in the classroom, it appears that textbooks encourage learning from a passive perspective.  A review of learning objectives from 16 textbooks used in Financial Accounting, Managerial Accounting, Finance, and Marketing demonstrates a focus on basically the same set of primary verbs at a low cognitive level. These low cognitive level verbs differ in substance from the expectations contained in the end-of-the-chapter materials.  In a world of assessment, the authors are concerned that the textbook learning objectives seem to focus on the form of technical content and not the substance of student learning

    LaRC Aerothermodynamic Ground Tests in Support of BOLT Flight Experiment

    Get PDF
    A review is provided of recent aerothermodynamic ground-test contributions by NASA Langley Research Center (LaRC) to the BOLT flight test program. Several test entries into the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel are discussed. These entries were intended to support the development and design of flight hardware and instrumentation. Some trends and observations from these entries are provided. Also, a comparison of two different global heat transfer test techniques is included and discussed

    New Opportunities to Advance Sport Nutrition

    Get PDF
    Sports nutrition is a relatively new discipline; with ~100 published papers/year in the 1990s to ~3,500+ papers/year today. Historically, sports nutrition research was primarily initiated by university-based exercise physiologists who developed new methodologies that could be impacted by nutrition interventions (e.g., carbohydrate/fat oxidation by whole body calorimetry and muscle glycogen by muscle biopsies). Application of these methods in seminal studies helped develop current sports nutrition guidelines as compiled in several expert consensus statements. Despite this wealth of knowledge, a limitation of the current evidence is the lack of appropriate intervention studies (e.g., randomized controlled clinical trials) in elite athlete populations that are ecologically valid (e.g., in real-life training and competition settings). Over the last decade, there has been an explosion of sports science technologies, methodologies, and innovations. Some of these recent advances are field-based, thus, providing the opportunity to accelerate the application of ecologically valid personalized sports nutrition interventions. Conversely, the acceleration of novel technologies and commercial solutions, especially in the field of biotechnology and software/app development, has far outstripped the scientific communities' ability to validate the effectiveness and utility of the vast majority of these new commercial technologies. This mini-review will highlight historical and present innovations with particular focus on technological innovations in sports nutrition that are expected to advance the field into the future. Indeed, the development and sharing of more “big data,” integrating field-based measurements, resulting in more ecologically valid evidence for efficacy and personalized prescriptions, are all future key opportunities to further advance the field of sports nutrition

    First evidence of middle atmospheric HO_2 response to 27 day solar cycles from satellite observations

    Get PDF
    HO_2 and OH, also known as HO_x, play an important role in controlling middle atmospheric O_3. Due to their photochemical production and short chemical lifetimes, HO_x are expected to respond rapidly to solar irradiance changes, resulting in O_3 variability. While OH solar cycle signals have been investigated, HO_2 studies have been limited by the lack of reliable observations. Here we present the first evidence of HO_2 variability during solar 27 day cycles by investigating the recently developed HO_2 data from the Aura Microwave Limb Sounder (MLS). We focus on 2012–2015, when solar variability is strong near the peak of Solar Cycle 24. The features of HO_2 variability, with the strongest signals at 0.01–0.068 hPa, correlate well with those of solar Lyman α. When continuous MLS OH observations are not available, the new HO_2 data could be a promising alternative for investigating HO_x variability and the corresponding impacts on O_3 and the climate

    Measuring Changes in Brain Metabolite Levels Using Live-animal Magnetic Resonance Spectroscopy and Offline LC-MS Metabolomics in a Binge-ethanol Murine Model

    Get PDF
    Alcoholism and acute alcohol binge are significant public health concerns. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics is a robust and sensitive technique for determining and quantifying transient or permanent biochemical changes within the central nervous system (CNS). However, access to human tissue and CNS biofluid for such analyses is limited in a clinical context. In-vivo magnetic resonance spectroscopy (MRS) is an attractive alternative for clinical measurement but currently the technique is limited to a small to a number of well-characterized, highly abundant analytes. We therefore seek to correlate LC-MS and MRS measurements to better understand and leverage the strengths of each. Following live animal MRS measurement, metabolites in hippocampal brain punch homogenates were quantified by LC-MS, and a Spearman’s correlation coefficient was calculated. We found that the measurements for glutamine and glutamate,, were significantly correlated. Other established neurochemicals, including NAA and aspartate, showed non-significant correlations. NAAG showed little correlation between the two measurements. Additional experiments are ongoing to resolve these discrepancies, and determine how to achieve better agreement between the two methods. In addition,, we used Elements (Proteome Software) to determine differentially expressed metabolites between ethanol exposed and control mice.. An initial pass shows more than 1000 peak-picked features identified in the two conditions, with approximately 200 analytes identified in the metabolite database (human) based on accurate mass. Differentially expressed candidates can be validated further using tandem mass spectrometry and, where possible, the use of authentic standards. Metabolites that change after binge ethanol exposure are reported along with an overview of comparing MRS with LC-MS datasets

    Topological Constraint Theory Analysis of Rigidity Transition in Highly Coordinate Amorphous Hydrogenated Boron Carbide

    Get PDF
    Topological constraint theory (TCT) has revealed itself to be a powerful tool in interpreting the behaviors of amorphous solids. The theory predicts a transition between a “rigid” overconstrained network and a “floppy” underconstrained network as a function of connectivity or average coordination number, 〈râŒȘ. The predicted results have been shown experimentally for various glassy materials, the majority of these being based on 4-fold-coordinate networks such as chalcogenide and oxide glasses. Here, we demonstrate the broader applicability of topological constraint theory to uniquely coordinated amorphous hydrogenated boron carbide (a-BC:H), based on 6-fold-coordinate boron atoms arranged into partially hydrogenated interconnected 12-vertex icosahedra. We have produced a substantial set of plasma-enhanced chemical vapor deposited a-BC:H films with a large range of densities and network coordination, and demonstrate a clear threshold in Young\u27s modulus as a function of 〈râŒȘ, ascribed to a rigidity transition. We investigate constraint counting strategies in this material and show that by treating icosahedra as “superatoms,” a rigidity transition is observed within the range of the theoretically predicted 〈râŒȘc value of 2.4 for covalent solids with bond-stretching and bond-bending forces. This experimental data set for a-BC:H is unique in that it represents a uniform change in connectivity with 〈râŒȘ and demonstrates a distinct rigidity transition with data points both above and below the transition threshold. Finally, we discuss how TCT can be applied to explain and optimize mechanical and dielectric properties in a-BC:H and related materials in the context of microelectronics applications

    Acute liver toxicity with ifosfamide in the treatment of sarcoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ifosfamide is a chemotherapy agent infrequently associated with liver toxicity. To the best of our knowledge, this report is the first to describe serious liver toxicity associated with ifosfamide used in combination with doxorubicin that caused acute but fully reversible liver failure and encephalopathy. This report reviews the possible mechanisms by which ifosfamide causes this adverse effect.</p> <p>Case report</p> <p>A 61-year-old Caucasian woman who presented with an inoperable right neck mass due to synovial sarcoma was treated with standard-dose ifosfamide and doxorubicin. Within 24 hours of completing the first cycle of chemotherapy, she developed significant derangements in liver function, with a 250-fold increase in transaminase and associated synthetic function impairment and encephalopathy. No other causes of liver failure were identified. Both biochemical tests and encephalopathy were reversed after supportive management and treatment with <it>N</it>-acetylcysteine. No liver toxicity was observed with subsequent cycles of chemotherapy with doxorubicin alone.</p> <p>Conclusion</p> <p>This case highlights the possibility that chemotherapy agents can cause rare and idiosyncratic toxicities, so physicians must be vigilant for drug reactions, especially when patients do not respond to usual treatment.</p

    Midlatitude atmospheric OH response to the most recent 11-y solar cycle

    Get PDF
    The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O_3) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O_3 chemistry. Here, we present an effort to investigate such OH variability using long-term observations (from space and the surface) and model simulations. Ground-based measurements and data from the Microwave Limb Sounder on the National Aeronautics and Space Administration’s Aura satellite suggest an ∌7–10% decrease in OH column abundance from solar maximum to solar minimum that is highly correlated with changes in total solar irradiance, solar Mg-II index, and Lyman-α index during SC 23. However, model simulations using a commonly accepted solar UV variability parameterization give much smaller OH variability (∌3%). Although this discrepancy could result partially from the limitations in our current understanding of middle atmospheric chemistry, recently published solar spectral irradiance data from the Solar Radiation and Climate Experiment suggest a solar UV variability that is much larger than previously believed. With a solar forcing derived from the Solar Radiation and Climate Experiment data, modeled OH variability (∌6–7%) agrees much better with observations. Model simulations reveal the detailed chemical mechanisms, suggesting that such OH variability and the corresponding catalytic chemistry may dominate the O_3 SC signal in the upper stratosphere. Continuing measurements through SC 24 are required to understand this OH variability and its impacts on O_3 further

    Acute liver toxicity with ifosfamide in the treatment of sarcoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Ifosfamide is a chemotherapy agent infrequently associated with liver toxicity. To the best of our knowledge, this report is the first to describe serious liver toxicity associated with ifosfamide used in combination with doxorubicin that caused acute but fully reversible liver failure and encephalopathy. This report reviews the possible mechanisms by which ifosfamide causes this adverse effect.</p> <p>Case report</p> <p>A 61-year-old Caucasian woman who presented with an inoperable right neck mass due to synovial sarcoma was treated with standard-dose ifosfamide and doxorubicin. Within 24 hours of completing the first cycle of chemotherapy, she developed significant derangements in liver function, with a 250-fold increase in transaminase and associated synthetic function impairment and encephalopathy. No other causes of liver failure were identified. Both biochemical tests and encephalopathy were reversed after supportive management and treatment with <it>N</it>-acetylcysteine. No liver toxicity was observed with subsequent cycles of chemotherapy with doxorubicin alone.</p> <p>Conclusion</p> <p>This case highlights the possibility that chemotherapy agents can cause rare and idiosyncratic toxicities, so physicians must be vigilant for drug reactions, especially when patients do not respond to usual treatment.</p
    • 

    corecore