16 research outputs found

    Spatio‐temporal distribution and hotspots of Plasmodium knowlesi infections in Sarawak, Malaysian Borneo

    Get PDF
    Plasmodium knowlesi infections in Malaysia are a new threat to public health and to the national efforts on malaria elimination. In the Kapit division of Sarawak, Malaysian Borneo, two divergent P. knowlesi subpopulations (termed Cluster 1 and Cluster 2) infect humans and are associated with long-tailed macaque and pig-tailed macaque hosts, respectively. It has been suggested that forest-associated activities and environmental modifications trigger the increasing number of knowlesi malaria cases. Since there is a steady increase of P. knowlesi infections over the past decades in Sarawak, particularly in the Kapit division, we aimed to identify hotspots of knowlesi malaria cases and their association with forest activities at a geographical scale using the Geographic Information System (GIS) tool. A total of 1064 P. knowlesi infections from 2014 to 2019 in the Kapit and Song districts of the Kapit division were studied. Overall demographic data showed that males and those aged between 18 and 64 years old were the most frequently infected (64%), and 35% of infections involved farming activities. Thirty-nine percent of Cluster 1 infections were mainly related to farming surrounding residential areas while 40% of Cluster 2 infections were associated with activities in the deep forest. Average Nearest Neighbour (ANN) analysis showed that humans infected with both P. knowlesi subpopulations exhibited a clustering distribution pattern of infection. The Kernel Density Analysis (KDA) indicated that the hotspot of infections surrounding Kapit and Song towns were classified as high-risk areas for zoonotic malaria transmission. This study provides useful information for staff of the Sarawak State Vector-Borne Disease Control Programme in their efforts to control and prevent zoonotic malaria

    Naturally Acquired Human Plasmodium cynomolgi and P. knowlesi Infections, Malaysian Borneo

    Get PDF
    To monitor the incidence of Plasmodium knowlesi infections and determine whether other simian malaria parasites are being transmitted to humans, we examined 1,047 blood samples from patients with malaria at Kapit Hospital in Kapit, Malaysia, during June 24, 2013–December 31, 2017. Using nested PCR assays, we found 845 (80.6%) patients had either P. knowlesi monoinfection (n = 815) or co-infection with other Plasmodium species (n = 30). We noted the annual number of these zoonotic infections increased greatly in 2017 (n = 284). We identified 6 patients, 17–65 years of age, with P. cynomolgi and P. knowlesi co-infections, confirmed by phylogenetic analyses of the Plasmodium cytochrome c oxidase subunit 1 gene sequences. P. knowlesi continues to be a public health concern in the Kapit Division of Sarawak, Malaysian Borneo. In addition, another simian malaria parasite, P. cynomolgi, also is an emerging cause of malaria in humans

    Naturally Acquired Human Plasmodium cynomolgi and P. knowlesi Infections, Malaysian Borneo

    Get PDF
    To monitor the incidence of Plasmodium knowlesi infections and determine whether other simian malaria parasites are being transmitted to humans, we examined 1,047 blood samples from patients with malaria at Kapit Hospital in Kapit, Malaysia, during June 24, 2013–December 31, 2017. Using nested PCR assays, we found 845 (80.6%) patients had either P. knowlesi monoinfection (n = 815) or co-infection with other Plasmodium species (n = 30). We noted the annual number of these zoonotic infections increased greatly in 2017 (n = 284). We identified 6 patients, 17–65 years of age, with P. cynomolgi and P. knowlesi co-infections, confirmed by phylogenetic analyses of the Plasmodium cytochrome c oxidase subunit 1 gene sequences. P. knowlesi continues to be a public health concern in the Kapit Division of Sarawak, Malaysian Borneo. In addition, another simian malaria parasite, P. cynomolgi, also is an emerging cause of malaria in humans

    A comparison of the clinical, laboratory and epidemiological features of two divergent subpopulations of Plasmodium knowlesi

    Get PDF
    Plasmodium knowlesi, a simian malaria parasite responsible for all recent indigenous cases of malaria in Malaysia, infects humans throughout Southeast Asia. There are two genetically distinct subpopulations of Plasmodium knowlesi in Malaysian Borneo, one associated with long-tailed macaques (termed cluster 1) and the other with pig-tailed macaques (cluster 2). A prospective study was conducted to determine whether there were any between-subpopulation differences in clinical and laboratory features, as well as in epidemiological characteristics. Over 2 years, 420 adults admitted to Kapit Hospital, Malaysian Borneo with knowlesi malaria were studied. Infections with each subpopulation resulted in mostly uncomplicated malaria. Severe disease was observed in 35/298 (11.7%) of single cluster 1 and 8/115 (7.0%) of single cluster 2 infections (p = 0.208). There was no clinically significant difference in outcome between the two subpopulations. Cluster 1 infections were more likely to be associated with peri-domestic activities while cluster 2 were associated with interior forest activities consistent with the preferred habitats of the respective macaque hosts. Infections with both P. knowlesi subpopulations cause a wide spectrum of disease including potentially life-threatening complications, with no implications for differential patient management

    Pediatric melioidosis in Sarawak, Malaysia: Epidemiological, clinical and microbiological characteristics

    Get PDF
    Background Melioidosis is a serious, and potentially fatal community-acquired infection endemic to northern Australia and Southeast Asia, including Sarawak, Malaysia. The disease, caused by the usually intrinsically aminoglycoside-resistant Burkholderia pseudomallei, most commonly affects adults with predisposing risk factors. There are limited data on pediatric melioidosis in Sarawak. Methods A part prospective, part retrospective study of children aged <15 years with culture-confirmed melioidosis was conducted in the 3 major public hospitals in Central Sarawak between 2009 and 2014. We examined epidemiological, clinical and microbiological characteristics. Findings Forty-two patients were recruited during the 6-year study period. The overall annual incidence was estimated to be 4.1 per 100,000 children <15 years, with marked variation between districts. No children had pre-existing medical conditions. Twenty-three (55%) had disseminated disease, 10 (43%) of whom died. The commonest site of infection was the lungs, which occurred in 21 (50%) children. Other important sites of infection included lymph nodes, spleen, joints and lacrimal glands. Seven (17%) children had bacteremia with no overt focus of infection. Delays in diagnosis and in melioidosis-appropriate antibiotic treatment were observed in nearly 90% of children. Of the clinical isolates tested, 35/36 (97%) were susceptible to gentamicin. Of these, all 11 isolates that were genotyped were of a single multi-locus sequence type, ST881, and possessed the putative B. pseudomallei virulence determinants bimABp, fhaB3, and the YLF gene cluster. Conclusions Central Sarawak has a very high incidence of pediatric melioidosis, caused predominantly by gentamicin-susceptible B. pseudomallei strains. Children frequently presented with disseminated disease and had an alarmingly high death rate, despite the absence of any apparent predisposing risk factor

    The Role of Ras-Associated Protein 1 (Rap1) in Cancer: Bad Actor or Good Player?

    No full text
    Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer

    Surveillance for respiratory syncytial virus and parainfluenza virus among patients hospitalized with pneumonia in Sarawak, Malaysia.

    No full text
    BACKGROUND:Respiratory syncytial virus (RSV) and parainfluenza virus (PIV) are frequent causes of pneumonia and death among children at Sibu and Kapit Hospitals in Sarawak, Malaysia. OBJECTIVES:To determine the prevalence and risk factors for RSV subtypes A and B and PIV types 1-4 among patients hospitalized with pneumonia. METHODS:In a cross-sectional, pilot study nasopharyngeal swabs were studied with real-time reverse transcription polymerase chain reaction assays. Concurrently, we helped Sibu and Kapit Hospitals adapt their first molecular diagnostics for RSV and PIV. RESULTS:Of 129 specimens collected (June to July 2017), 39 tested positive for RSV-A (30.2%), two were positive for RSV B (1.6%), one was positive for PIV-3 (0.8%) and one was positive for PIV-4 (0.8%). No samples were positive for PIV-1 or PIV-2. Of the 39 RSV-A positive specimens, 46.2% were collected from children under one year of age and only 5.1% were from patients over the age of 18. A multivariable analysis found the odds of children 18 years of age, and the odds of patients hospitalized at Kapit Hospital testing positive for RSV-A were 3.2 (95% CI: 1.3, 7.8) times larger than patients hospitalized at Sibu Hospital. CONCLUSION:This study found an unusually high prevalence of RSV-A among pneumonia patients admitted to the two hospitals. Subsequently, Sibu Hospital adapted the molecular assays with the goal of providing more directed care for such pneumonia patients

    Burkholderia pseudomallei Isolates from Sarawak Malaysian Borneo Are Predominantly Susceptible to Aminoglycosides and Macrolides

    No full text
    Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity

    Pediatric melioidosis in Sarawak, Malaysia: Epidemiological, clinical and microbiological characteristics.

    No full text
    Melioidosis is a serious, and potentially fatal community-acquired infection endemic to northern Australia and Southeast Asia, including Sarawak, Malaysia. The disease, caused by the usually intrinsically aminoglycoside-resistant Burkholderia pseudomallei, most commonly affects adults with predisposing risk factors. There are limited data on pediatric melioidosis in Sarawak.A part prospective, part retrospective study of children aged <15 years with culture-confirmed melioidosis was conducted in the 3 major public hospitals in Central Sarawak between 2009 and 2014. We examined epidemiological, clinical and microbiological characteristics.Forty-two patients were recruited during the 6-year study period. The overall annual incidence was estimated to be 4.1 per 100,000 children <15 years, with marked variation between districts. No children had pre-existing medical conditions. Twenty-three (55%) had disseminated disease, 10 (43%) of whom died. The commonest site of infection was the lungs, which occurred in 21 (50%) children. Other important sites of infection included lymph nodes, spleen, joints and lacrimal glands. Seven (17%) children had bacteremia with no overt focus of infection. Delays in diagnosis and in melioidosis-appropriate antibiotic treatment were observed in nearly 90% of children. Of the clinical isolates tested, 35/36 (97%) were susceptible to gentamicin. Of these, all 11 isolates that were genotyped were of a single multi-locus sequence type, ST881, and possessed the putative B. pseudomallei virulence determinants bimABp, fhaB3, and the YLF gene cluster.Central Sarawak has a very high incidence of pediatric melioidosis, caused predominantly by gentamicin-susceptible B. pseudomallei strains. Children frequently presented with disseminated disease and had an alarmingly high death rate, despite the absence of any apparent predisposing risk factor
    corecore