657 research outputs found

    BOF: a novel family of bacterial OB-fold proteins

    Get PDF
    AbstractUsing top-of-the-line fold recognition methods, we assigned an oligonucleotide/oligosaccharide-binding (OB)-fold structure to a family of previously uncharacterized hypothetical proteins from several bacterial genomes. This novel family of bacterial OB-fold (BOF) proteins present in a number of pathogenic strains encompasses sequences of unknown function from DUF388 (in Pfam database) and COG3111. The BOF proteins can be linked evolutionarily to other members of the OB-fold nucleic acid-binding superfamily (anticodon-binding and single strand DNA-binding domains), although they probably lack nucleic acid-binding properties as implied by the analysis of the potential binding site. The presence of conserved N-terminal predicted signal peptide indicates that BOF family members localize in the periplasm where they may function to bind proteins, small molecules, or other typical OB-fold ligands. As hypothesized for the distantly related OB-fold containing bacterial enterotoxins, the loss of nucleotide-binding function and the rapid evolution of the BOF ligand-binding site may be associated with the presence of BOF proteins in mobile genetic elements and their potential role in bacterial pathogenicity

    Identification of novel restriction endonuclease-like fold families among hypothetical proteins

    Get PDF
    Restriction endonucleases and other nucleic acid cleaving enzymes form a large and extremely diverse superfamily that display little sequence similarity despite retaining a common core fold responsible for cleavage. The lack of significant sequence similarity between protein families makes homology inference a challenging task and hinders new family identification with traditional sequence-based approaches. Using the consensus fold recognition method Meta-BASIC that combines sequence profiles with predicted protein secondary structure, we identify nine new restriction endonuclease-like fold families among previously uncharacterized proteins and predict these proteins to cleave nucleic acid substrates. Application of transitive searches combined with gene neighborhood analysis allow us to confidently link these unknown families to a number of known restriction endonuclease-like structures and thus assign folds to the uncharacterized proteins. Finally, our method identifies a novel restriction endonuclease-like domain in the C-terminus of RecC that is not detected with structure-based searches of the existing PDB database

    Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PD-(D/E)XK nucleases constitute a large and highly diverse superfamily of enzymes that display little sequence similarity despite retaining a common core fold and a few critical active site residues. This makes identification of new PD-(D/E)XK nuclease families a challenging task as they usually escape detection with standard sequence-based methods. We developed a modified transitive meta profile search approach and to consider the structural diversity of PD-(D/E)XK nuclease fold more thoroughly we analyzed also lower than threshold Meta-BASIC hits to select potentially correct predictions placed among unreliable or incorrect ones.</p> <p>Results</p> <p>Application of a modified transitive Meta-BASIC searches on updated PFAM families and PDB structures resulted in detection of five new PD-(D/E)XK nuclease families encompassing hundreds of so far uncharacterized and poorly annotated proteins. These include four families catalogued in PFAM database as domains of unknown function (DUF506, DUF524, DUF1626 and DUF1703) and YhgA-like family of putative transposases. Three of these families represent extremely distant homologs (DUF506, DUF524, and YhgA-like), while two are newly defined in updated database (DUF1626 and DUF1703). In addition, we also confidently identified an extended AAA-ATPase domain in the N-terminal region of DUF1703 family proteins.</p> <p>Conclusion</p> <p>Obtained results suggest that detailed analysis of below threshold Meta-BASIC hits may push limits further for distant homology detection in the 'midnight zone' of homology. All identified families conserve the core evolutionary fold, secondary structure and hydrophobic patterns common to existing PD-(D/E)XK nucleases and maintain critical active site motifs that contribute to nucleic acid cleavage. Further experimental investigations should address the predicted activity and clarify potential substrates providing further insight into detailed biological role of these newly detected nucleases.</p

    SCOPmap: Automated assignment of protein structures to evolutionary superfamilies

    Get PDF
    BACKGROUND: Inference of remote homology between proteins is very challenging and remains a prerogative of an expert. Thus a significant drawback to the use of evolutionary-based protein structure classifications is the difficulty in assigning new proteins to unique positions in the classification scheme with automatic methods. To address this issue, we have developed an algorithm to map protein domains to an existing structural classification scheme and have applied it to the SCOP database. RESULTS: The general strategy employed by this algorithm is to combine the results of several existing sequence and structure comparison tools applied to a query protein of known structure in order to find the homologs already classified in SCOP database and thus determine classification assignments. The algorithm is able to map domains within newly solved structures to the appropriate SCOP superfamily level with ~95% accuracy. Examples of correctly mapped remote homologs are discussed. The algorithm is also capable of identifying potential evolutionary relationships not specified in the SCOP database, thus helping to make it better. The strategy of the mapping algorithm is not limited to SCOP and can be applied to any other evolutionary-based classification scheme as well. SCOPmap is available for download. CONCLUSION: The SCOPmap program is useful for assigning domains in newly solved structures to appropriate superfamilies and for identifying evolutionary links between different superfamilies

    Climate Study of the Learning Environment for Faculty, Staff, and Students at a U.S. Dental School: Foundation for Culture Change

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153619/1/jddjde017073.pd

    Fido, a Novel AMPylation Domain Common to Fic, Doc, and AvrB

    Get PDF
    BACKGROUND:The Vibrio parahaemolyticus type III secreted effector VopS contains a fic domain that covalently modifies Rho GTPase threonine with AMP to inhibit downstream signaling events in host cells. The VopS fic domain includes a conserved sequence motif (HPFx[D/E]GN[G/K]R) that contributes to AMPylation. Fic domains are found in a variety of species, including bacteria, a few archaea, and metazoan eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS:We show that the AMPylation activity extends to a eukaryotic fic domain in Drosophila melanogaster CG9523, and use sequence and structure based computational methods to identify related domains in doc toxins and the type III effector AvrB. The conserved sequence motif that contributes to AMPylation unites fic with doc. Although AvrB lacks this motif, its structure reveals a similar topology to the fic and doc folds. AvrB binds to a peptide fragment of its host virulence target in a similar manner as fic binds peptide substrate. AvrB also orients a phosphate group from a bound ADP ligand near the peptide-binding site and in a similar position as a bound fic phosphate. CONCLUSIONS/SIGNIFICANCE:The demonstrated eukaryotic fic domain AMPylation activity suggests that the VopS effector has exploited a novel host posttranslational modification. Fic domain-related structures give insight to the AMPylation active site and to the VopS fic domain interaction with its host GTPase target. These results suggest that fic, doc, and AvrB stem from a common ancestor that has evolved to AMPylate protein substrates

    Pyrimidine salvage enzymes are essential for de novo biosynthesis of Deoxypyrimidine nucleotides in Trypanosoma brucei

    Get PDF
    © 2016 Leija et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The human pathogenic parasite Trypanosoma brucei possess both de novo and salvage routes for the biosynthesis of pyrimidine nucleotides. Consequently, they do not require salvageable pyrimidines for growth. Thymidine kinase (TK) catalyzes the formation of dTMP and dUMP and is one of several salvage enzymes that appear redundant to the de novo pathway. Surprisingly, we show through analysis of TK conditional null and RNAi cells that TK is essential for growth and for infectivity in a mouse model, and that a catalytically active enzyme is required for its function. Unlike humans, T. brucei and all other kinetoplastids lack dCMP deaminase (DCTD), which provides an alternative route to dUMP formation. Ectopic expression of human DCTD resulted in full rescue of the RNAi growth phenotype and allowed for selection of viable TK null cells. Metabolite profiling by LC-MS/MS revealed a buildup of deoxypyrimidine nucleosides in TK depleted cells. Knockout of cytidine deaminase (CDA), which converts deoxycytidine to deoxyuridine led to thymidine/deoxyuridine auxotrophy. These unexpected results suggested that T. brucei encodes an unidentified 5'-nucleotidase that converts deoxypyrimidine nucleotides to their corresponding nucleosides, leading to their dead-end buildup in TK depleted cells at the expense of dTTP pools. Bioinformatics analysis identified several potential candidate genes that could encode 5'-nucleotidase activity including an HD-domain protein that we show catalyzes dephosphorylation of deoxyribonucleotide 5'-monophosphates. We conclude that TK is essential for synthesis of thymine nucleotides regardless of whether the nucleoside precursors originate from the de novo pathway or through salvage. Reliance on TK in the absence of DCTD may be a shared vulnerability among trypanosomatids and may provide a unique opportunity to selectively target a diverse group of pathogenic single-celled eukaryotes with a single drug.This work was supported by National Institutes of Health (grants AI078962 and AI034432) to MAP (https://www.niaid.nih.gov) and (grant GM007062) to CL (https://www.nigms.nih. gov), the Welch Foundation (grant I-1257) to MAP and (grant I-1686) to JJK (http://www.welch1.org), and Fundac ̧ão para a Ciência e Tecnologia (FCT, Portugal) SFRH/BD/51286/2010 (http://www.fct.pt) to FRF.info:eu-repo/semantics/publishedVersio

    A Database of Domain Definitions for Proteins with Complex Interdomain Geometry

    Get PDF
    Protein structural domains are necessary for understanding evolution and protein folding, and may vary widely from functional and sequence based domains. Although, various structural domain databases exist, defining domains for some proteins is non-trivial, and definitions of their domain boundaries are not available. Here, we present a novel database of manually defined structural domains for a representative set of proteins from the SCOP “multi-domain proteins” class. (http://prodata.swmed.edu/multidom/). We consider our domains as mobile evolutionary units, which may rearrange during protein evolution. Additionally, they may be visualized as structurally compact and possibly independently folding units. We also found that representing domains as evolutionary and folding units do not always lead to a unique domain definition. However, unlike existing databases, we retain and refine these “alternate” domain definitions after careful inspection of structural similarity, functional sites and automated domain definition methods. We provide domain definitions, including actual residue boundaries, for proteins that well known databases like SCOP and CATH do not attempt to split. Our alternate domain definitions are suitable for sequence and structure searches by automated methods. Additionally, the database can be used for training and testing domain delineation algorithms. Since our domains represent structurally compact evolutionary units, the database may be useful for studying domain properties and evolution
    • …
    corecore