56 research outputs found

    Resuscitation Endpoints in Trauma

    Full text link
    Fluid and blood resuscitation is the mainstay of therapy for the treatment of hemorrhagic shock, whether due to trauma or other etiology. Cessation of hemorrhage with rapid hemostatic techniques is the first priority in the treatment of traumatic hemorrhagic shock, with concomitant fluid resuscitation with blood and crystalloids to maintain perfusion and organ function. “Hypotensive” or “low-volume” resuscitation has become increasingly accepted in the prehospital resuscitation phase of trauma, prior to definitive hemorrhage control, since aggressive fluid resuscitation may increase bleeding. Resuscitation after hemorrhage control is focused on restoration of tissue oxygenation. Efforts to optimize resuscitation have used “resuscitation endpoints” as markers of adequacy of resuscitation. The resuscitation endpoints that have been evaluated include both global (restoration of blood pressure, heart rate and urine output, lactate, base deficit, mixed venous oxygen saturation, ventricular end-diastolic volume) and regional (gastric tonometry, near-infrared spectroscopy for measurement of muscle tissue oxygen saturation) measures. This review critically evaluates the evidence regarding the use of resuscitation endpoints in trauma.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75386/1/j.1778-428X.2005.tb00127.x.pd

    Suboptimal Activation of Antigen-Specific CD4+ Effector Cells Enables Persistence of M. tuberculosis In Vivo

    Get PDF
    Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-γ without ex vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-γ production. During the early phase of infection, ∼10% of P25TCRTh1 cells produced IFN-γ in vivo; this declined to <1% as infection progressed to chronic phase. Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by providing one or more epitope peptides may be a successful strategy for TB therapy

    International Consortium for Health Outcome Measurement Set of Outcomes That Matter to People Living With Inflammatory Arthritis: Consensus From an International Working Group

    Get PDF
    © 2018, The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology. Objective: The implementation of value-based health care in inflammatory arthritis requires a standardized set of modifiable outcomes and risk-adjustment variables that is feasible to implement worldwide. Methods: The International Consortium for Health Outcomes Measurement (ICHOM) assembled a multidisciplinary working group that consisted of 24 experts from 6 continents, including 6 patient representatives, to develop a standard set of outcomes for inflammatory arthritis. The process followed a structured approach, using a modified Delphi process to reach consensus on the following decision areas: conditions covered by the set, outcome domains, outcome measures, and risk-adjustment variables. Consensus in areas 2 to 4 were supported by systematic literature reviews and consultation of experts. Results: The ICHOM Inflammatory Arthritis Standard Set covers patients with rheumatoid arthritis (RA), axial spondyloarthritis, psoriatic arthritis, and juvenile idiopathic arthritis (JIA). We recommend that outcomes regarding pain, fatigue, activity limitations, overall physical and mental health impact, work/school/housework ability and productivity, disease activity, and serious adverse events be collected at least annually. Validated measures for patient-reported outcomes were endorsed and linked to common reporting metrics. Age, sex at birth, education level, smoking status, comorbidities, time since diagnosis, and rheumatoid factor and anti-citrullinated protein antibody lab testing for RA and JIA should be collected as risk-adjustment variables. Conclusion: We present the ICHOM inflammatory arthritis Standard Set of outcomes, which enables health care providers to implement the value-based health care framework and compare outcomes that are important to patients with inflammatory arthritis

    Coronary artery surgery: cardiotomy suction or cell salvage?

    Get PDF
    Coronary artery bypass grafting (CABG) today results in what may be regarded as acceptable levels of blood loss with many institutions avoiding allogeneic red cell transfusion in over 60% of their patients. The majority of cardiac surgeons employ cardiotomy suction to preserve autologous blood during on-pump coronary artery bypass surgery; however the use of cardiotomy suction is associated with a more pronounced systemic inflammatory response and a resulting coagulopathy as well as exacerbating the microembolic load. This leads to a tendency to increased blood loss, transfusion requirement and organ dysfunction. Conversely, the avoidance of cardiotomy suction in coronary artery bypass surgery is not associated with an increased transfusion requirement. There is therefore no indication for the routine use of cardiotomy suction in on-pump coronary artery surgery

    Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients

    Get PDF
    BACKGROUND: We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO(2)/FiO(2)). METHODS: Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO(2)/FiO(2 )was < 350 and decreased spirometric volume was < 1.8 L. RESULTS: Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO(2)/FiO(2), and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO(2)/FiO(2 )– 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. CONCLUSIONS: Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO(2)/FiO(2), or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury

    Profiling Early Lung Immune Responses in the Mouse Model of Tuberculosis

    Get PDF
    Tuberculosis (TB) is caused by the intracellular bacteria Mycobacterium tuberculosis, and kills more than 1.5 million people every year worldwide. Immunity to TB is associated with the accumulation of IFNγ-producing T helper cell type 1 (Th1) in the lungs, activation of M.tuberculosis-infected macrophages and control of bacterial growth. However, very little is known regarding the early immune responses that mediate accumulation of activated Th1 cells in the M.tuberculosis-infected lungs. To define the induction of early immune mediators in the M.tuberculosis-infected lung, we performed mRNA profiling studies and characterized immune cells in M.tuberculosis-infected lungs at early stages of infection in the mouse model. Our data show that induction of mRNAs involved in the recognition of pathogens, expression of inflammatory cytokines, activation of APCs and generation of Th1 responses occurs between day 15 and day 21 post infection. The induction of these mRNAs coincides with cellular accumulation of Th1 cells and activation of myeloid cells in M.tuberculosis-infected lungs. Strikingly, we show the induction of mRNAs associated with Gr1+ cells, namely neutrophils and inflammatory monocytes, takes place on day 12 and coincides with cellular accumulation of Gr1+ cells in M.tuberculosis-infected lungs. Interestingly, in vivo depletion of Gr1+ neutrophils between days 10–15 results in decreased accumulation of Th1 cells on day 21 in M.tuberculosis-infected lungs without impacting overall protective outcomes. These data suggest that the recruitment of Gr1+ neutrophils is an early event that leads to production of chemokines that regulate the accumulation of Th1 cells in the M.tuberculosis-infected lungs

    Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies

    Get PDF
    corecore