86 research outputs found

    Overexpression of cytochrome P450 1A1 and its novel spliced variant in ovarian cancer cells: alternative subcellular enzyme compartmentation may contribute to carcinogenesis

    Get PDF
    Epithelial ovarian cancer derived from the human ovarian surface epithelium (HOSE) is the leading cause of death from gynecologic malignancies among American women. Metabolic activation of endogenous and exogenous chemicals by cytochrome P450 (CYP) class I enzymes has been implicated in its etiology. In this study, we showed overexpression of CYP1A1 mRNA, but not CYP1B1 transcripts, in ovarian cancer cell lines when compared with primary cultures or immortalized HOSE cell lines. Importantly, we identified a novel, enzymatically active, spliced variant of CYP1A1 (CYP1A1v) formed by excision of an 84-bp cryptic intron in exon 2. CYP1A1v is overexpressed in ovarian cancer cell lines and exhibits a unique subcellular distribution restricted to the nucleus and mitochondria, contrary to the endoplasmic reticulum localization of the wild-type enzyme. In concordance, total CYP1A1 activity, as measured by the ethoxyresorufin O-deethylase assay, was detected in mitochondrial, nuclear, and microsomal fractions of ovarian cancer cells but was notably absent in all subcellular fractions of HOSE cells. Immunocytochemistry studies in 30 clinical specimens revealed overexpression of CYP1A1 in various types of ovarian cancers compared with benign epithelia and frequent localization of the enzyme to cancer cell nuclei. Forced expression of CYP1A1wt or CYP1A1v in HOSE cells resulted in nuclear localization of the enzyme and acquisition of anchorage-independent growth, which was further exacerbated following exposure to benzo(a)pyrene or 17beta-estradiol. Collectively, these data provided the first evidence that CYP1A1 overexpression and alternative splicing could contribute to ovarian cancer initiation and progression

    Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus

    Get PDF
    Background: Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes

    Estrogen receptor Ī²2 and Ī²5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion

    Get PDF
    Estrogens play a pivotal role in the development and progression of prostate cancer (PCa). Their actions are mediated by estrogen receptors (ERs), particularly ERĪ² in the prostate epithelium. With the discovery of ERĪ² isoforms, data from previous studies that focused principally on the wild-type ERĪ² (ERĪ²1) may not be adequate in explaining the still controversial role of ERĪ²(s) in prostate carcinogenesis. In this study, using newly generated isoform-specific antibodies, immunohistochemistry (IHC) was performed on a tumor microarray comprised of 144 specimens. IHC results were correlated with pathological and clinical follow-up data to delineate the distinct roles of ERĪ²1, ERĪ²2, and ERĪ²5 in PCa. ERĪ²2 was commonly found in the cytoplasm and was the most abundant isoform followed by ERĪ²1 localized predominantly in the nucleus, and ERĪ²5 was primarily located in the cytoplasm. Logistic regression analyses demonstrated that nuclear ERĪ²2 (nERĪ²2) is an independent prognostic marker for prostate specific antigen (PSA) failure and postoperative metastasis (POM). In a Kaplanā€“Meier analysis, the combined expression of both nERĪ²2 and cytoplasmic ERĪ²5 identified a group of patients with the shortest POM-free survival. Cox proportional hazard models revealed that nERĪ²2 predicted shorter time to POM. In concordance with IHC data, stable, ectopic expression of ERĪ²2 or ERĪ²5 enhanced PCa cell invasiveness but only PCa cells expressing ERĪ²5 exhibited augmented cell migration. This is the first study to uncover a metastasis-promoting role of ERĪ²2 and ERĪ²5 in PCa, and show that the two isoforms, singularly and conjointly, have prognostic values for PCa progression. These findings may aid future clinical management of PCa

    Environmental factors, epigenetics, and developmental origin of reproductive disorders

    Get PDF
    Sex-specific differentiation, development, and function of the reproductive system are largely dependent on steroid hormones. For this reason, developmental exposure to estrogenic and anti-androgenic endocrine disrupting chemicals (EDCs) is associated with reproductive dysfunction in adulthood. Human data in support of ā€œDevelopmental Origins of Health and Diseaseā€ (DOHaD) comes from multigenerational studies on offspring of diethylstilbestrol-exposed mothers/grandmothers. Animal data indicate that ovarian reserve, female cycling, adult uterine abnormalities, sperm quality, prostate disease, and mating behavior are susceptible to DOHaD effects induced by EDCs such as bisphenol A, genistein, diethylstilbestrol, p,pā€²-dichlorodiphenyl-dichloroethylene, phthalates, and polyaromatic hydrocarbons. Mechanisms underlying these EDC effects include direct mimicry of sex steroids or morphogens and interference with epigenomic sculpting during cell and tissue differentiation. Exposure to EDCs is associated with abnormal DNA methylation and other epigenetic modifications, as well as altered expression of genes important for development and function of reproductive tissues. Here we review the literature exploring the connections between developmental exposure to EDCs and adult reproductive dysfunction, and the mechanisms underlying these effects

    Cue-Polarized Transport of Ī²-actin mRNA Depends on 3ā€²UTR and Microtubules in Live Growth Cones

    Get PDF
    Guidance cues trigger fast responses in axonal growth cones such as directional turning and collapse that require local protein synthesis. An attractive cue-gradient, such as Netrin-1, triggers de novo synthesis of Ī²-actin localized to the near-side compartment of the growth cone that promotes F-actin assembly and attractive steering. How this precise spatial asymmetry in mRNA translation arises across the small expanse of the growth cone is poorly understood. Pre-localized mRNAs in the vicinity of activated receptors could be selectively translated and/or new mRNAs could be trafficked into the area. Here we have performed live imaging of fluorescent-tagged Ī²-actin mRNA to investigate mRNA trafficking dynamics in Xenopus retinal ganglion cell (RGC) axons and growth cones in response to Netrin-1. A Netrin-1 gradient was found to elicit the transport of Ī²-actin mRNA granules to the near-side of growth cones within a 4ā€“7 min window. This polarized mRNA trafficking depended on the 3ā€² untranslated region (UTR) since mRNA-Ī”3ā€²UTR mutant failed to exhibit cue-induced localization. Global application of Netrin-1 significantly increased the anterograde movement of Ī²-actin mRNA along axons and also promoted microtubule-dependent mRNA excursions from the central domain of the growth cone into the periphery (filopodia and lamellipodia). Dual channel imaging revealed Ī²-actin mRNA riding behind the microtubule plus-end tracking protein, EB1, in movements along dynamic microtubules into filopodia. The mRNA-EB1 movements were unchanged by a Netrin-1 gradient indicating the dynamic microtubules themselves do not underlie the cue-induced polarity of RNA movement. Finally, fast-moving elongated ā€œworm-likeā€ trains of Cy3-RNA, distinct from mitochondria, were seen transporting RNA along axons in vitro and in vivo suggesting the existence of a novel transport organelle. Overall, the results provide evidence that the axonal trafficking of Ī²-actin mRNA can be regulated by the guidance cue Netrin-1 to transduce the polarity of an extracellular stimulus and that the 3ā€²UTR is essential for this cue-induced regulation

    AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance.</p> <p>Results</p> <p>Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA.</p> <p>Conclusions</p> <p>AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and intergenic sequences with modest capture and sequencing costs, computation workload and DNA sample requirement is particularly well suited for accelerating the discovery of somatic mutations, as well as analysis of disease-predisposing germline polymorphisms, by making possible the comparative genome-wide scanning of DNA sequences from large human cohorts.</p

    Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer

    Get PDF
    Fulvestrant (ICI-182,780) has recently been shown to effectively suppress prostate cancer cell growth in vitro and in vivo. But it is unclear whether microRNAs play a role in regulating oncogene expression in fulvestrant-treated prostate cancer. Here, this study reports hsa-miR-765 as the first fulvestrant-driven, ERĪ²-regulated miRNA exhibiting significant tumor suppressor activities like fulvestrant, against prostate cancer cell growth via blockage of cell-cycle progression at the G2/M transition, and cell migration and invasion possibly via reduction of filopodia/intense stress-fiber formation. Fulvestrant was shown to upregulate hsa-miR-765 expression through recruitment of ERĪ² to the 5ā€²-regulatory-region of hsa-miR-765. HMGA1, an oncogenic protein in prostate cancer, was identified as a downstream target of hsa-miR-765 and fulvestrant in cell-based experiments and a clinical study. Both the antiestrogen and the hsa-miR-765 mimic suppressed HMGA1 protein expression. In a neo-adjuvant study, levels of hsa-miR-765 were increased and HMGA1 expression was almost completely lost in prostate cancer specimens from patients treated with a single dose (250 mg) of fulvestrant 28 days before prostatectomy. These findings reveal a novel fulvestrant signaling cascade involving ERĪ²-mediated transcriptional upregulation of hsa-miR-765 that suppresses HMGA1 protein expression as part of the mechanism underlying the tumor suppressor action of fulvestrant in prostate cancer. Ā© 2014 Leung et al

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • ā€¦
    corecore