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Abstract

Background: Digital image analysis offers advantages over traditional pathologist visual scoring of
immunohistochemistry, although few studies examining the correlation and reproducibility of these methods
have been performed in prostate cancer. We evaluated the correlation between digital image analysis
(continuous variable data) and pathologist visual scoring (quasi-continuous variable data), reproducibility of
each method, and association of digital image analysis methods with outcomes using prostate cancer tissue
microarrays (TMAs) stained for estrogen receptor-β2 (ERβ2).
Methods: Prostate cancer TMAs were digitized and evaluated by pathologist visual scoring versus digital
image analysis for ERβ2 staining within tumor epithelium. Two independent analysis runs were performed to
evaluate reproducibility. Image analysis data were evaluated for associations with recurrence-free survival and
disease specific survival following radical prostatectomy.

Results: We observed weak/moderate Spearman correlation between digital image analysis and pathologist
visual scores of tumor nuclei (Analysis Run A: 0.42, Analysis Run B: 0.41), and moderate/strong correlation
between digital image analysis and pathologist visual scores of tumor cytoplasm (Analysis Run A: 0.70,
Analysis Run B: 0.69). For the reproducibility analysis, there was high Spearman correlation between
pathologist visual scores generated for individual TMA spots across Analysis Runs A and B (Nuclei: 0.84,
Cytoplasm: 0.83), and very high correlation between digital image analysis for individual TMA spots across
Analysis Runs A and B (Nuclei: 0.99, Cytoplasm: 0.99). Further, ERβ2 staining was significantly associated with
increased risk of prostate cancer-specific mortality (PCSM) when quantified by cytoplasmic digital image
analysis (HR 2.16, 95 % CI 1.02–4.57, p = 0.045), nuclear image analysis (HR 2.67, 95 % CI 1.20–5.96, p = 0.016),
and total malignant epithelial area analysis (HR 5.10, 95 % CI 1.70–15.34, p = 0.004). After adjusting for
clinicopathologic factors, only total malignant epithelial area ERβ2 staining was significantly associated with
PCSM (HR 4.08, 95 % CI 1.37–12.15, p = 0.012).
(Continued on next page)

* Correspondence: sschmech@uw.edu
1Department of Pathology, University of Washington, 908 Jefferson Street,
Room 2NJB244, Seattle, WA 98104, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rizzardi et al. Diagnostic Pathology  (2016) 11:63 
DOI 10.1186/s13000-016-0511-5

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/194671722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13000-016-0511-5&domain=pdf
mailto:sschmech@uw.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Conclusions: Digital methods of immunohistochemical quantification are more reproducible than pathologist
visual scoring in prostate cancer, suggesting that digital methods are preferable and especially warranted for
studies involving large sample sizes.
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Background
Significant advances in digital imaging have enabled auto-
mated technologies to reproduce and often outperform
pathologist visual scoring of immunohistochemistry (IHC)
assays. Visual scoring has been the traditional gold
standard method for quantifying IHC staining, but
problems with this method include the limited range
of resulting data [1, 2], human error [3], less than op-
timal reproducibility [4], and resulting ordinal or
quasi-continuous variable data rather than true con-
tinuous variable data. Digital image analysis over-
comes many of these limitations. For example, digital
methods allow algorithm parameters to be locked
yielding more reproducible data especially when stain-
ing is weak and most linearly related to antigen con-
centration [2, 5, 6], and output continuous variable
data. Previous studies reveal that IHC cut-points of
biomarkers with prognostic relevance may be identi-
fied using continuous variable digital imaging data
that were either undetected [7] or not as strongly as-
sociated [2, 8–10] using visual scoring data. Further-
more, digital methods offer a feasible way to scale
experiments to high-throughput sample sizes (e.g., experi-
ments using tissue microarrays) which can be otherwise
time-limiting for pathologists to complete [11].
Numerous studies have demonstrated a high degree of

correlation between digital image analysis and patholo-
gist visual scoring. The majority of this research has
been performed in breast cancer tissue on human epi-
dermal growth factor receptor, estrogen receptor, and
progesterone receptor [8, 12–22]. Similar strong correla-
tions between software algorithms and pathologist visual
scoring have been described in other tissue types includ-
ing esophageal cancer [23], colorectal cancer [24], ovar-
ian cancer [11], and prostate cancer (PCa) [25].
Pathologist visual scoring data often use a simple

ordinal variable scale (e.g., negative “0”, weak “1 + ”,
medium “2 + ”, and strong “3 + ” positive staining). More
complex pathologist visual scoring systems have been
developed to provide quasi-continuous variable data,
such as multiplying an ordinal variable of intensity by an
estimate of tissue area comprising that intensity level
[26, 27]. Although studies examining the correlation and
reproducibility of pathologist visual scoring and digital
image analysis have been performed in breast cancer, to
date there has been little research validating such tools

in PCa. Few prognostic biomarkers are available for rou-
tine clinical use in PCa and the use of digital methods
for evaluating IHC assays in large PCa studies represents
a valuable technique for evaluating protein biomarkers
of tumor aggressiveness [28]. Estrogen receptor β2
(ERβ2) plays a metastasis-promoting role in PCa and
has been demonstrated to have prognostic value for
tumor progression [29, 30]. Here, we have evaluated the
correlation between digital image analysis and patholo-
gist visual scoring (using a semi-quantitative scoring
technique [27]), the reproducibility of these two
methods, as well as the association of digital image ana-
lysis with disease-specific survival using a large set of
PCa tissue microarray (TMA) slides stained for ERβ2.

Methods
Clinical cohort and TMA construction
PCa patients (ages 35–74 at diagnosis) of European or
African ancestry residing in King County, WA were
identified from the Seattle-Puget Sound Surveillance,
Epidemiology, and End Results (SEER) cancer registry
for population-based studies of PCa risk factors after ap-
proval from the Fred Hutchinson Cancer Research
Center Institutional Review Board [30–32]. All men
were diagnosed with histologically confirmed PCa during
either 1993–1996 or 2002–2005. Demographic informa-
tion and medical history for each patient were obtained
by structured in-person interviews, and clinicopathologic
data were obtained from the cancer registry. Of the 831
interviewed patients who underwent radical prostatec-
tomy, 566 (68 %) consented to release of tumor tissue
including for TMA construction and had formalin-fixed
paraffin-embedded blocks available for inclusion in this
study, which maintains active Fred Hutchinson Cancer
Research Center Institutional Review Board approval
(IRF #4714) at the time of submitting this paper for pub-
lication. Vital status and underlying cause of death was
available for these patients through the biannual linkages
with the SEER registry and review of death certificates to
confirm cancer-specific vs. other cause mortality. PCa
recurrence was determined by follow-up surveys sent to
patients in 2004–2005 and in 2010–2011, review of
medical records, and physician follow-up as needed.
Biochemical recurrence was defined as postoperative
prostate-specific antigen (PSA) of ≥2.0 ng/mL. Meta-
static progression was confirmed by bone scan, magnetic
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resonance imaging, computerized tomography scan, or
biopsy.
Formalin-fixed, paraffin-embedded blocks of tumor

tissue obtained at the time of radical prostatectomy were
used to make hematoxylin and eosin (H&E) stained
slides, which were reviewed by an experienced genitouri-
nary pathologist. Duplicate tumor tissue cores of
1.0 mm diameter were taken from a single tumor focus
(≥75 % tumor tissue) of the donor blocks and arrayed
into a new recipient paraffin block with a manual tissue
arrayer (MTA-1; Beecher Instruments, Sun Prairie, WI).

Immunohistochemistry and pathologist visual scoring
Unstained 5 μm-thick TMA sections were deparaffinized
and rehydrated using standard methods. IHC was per-
formed on TMA sections using a custom polyclonal
antibody specific for the C-terminus of ERβ2 (482-
MKMETLLPEATMEQ-495) as previously reported [29].
ERβ2 stained slides were scanned for pathologist visual
scoring using an automated Tissuefax microscope
(TissueGnostics, Tarzana, CA) and reviewed via an on-
line web gallery. ERβ2 immunostaining within malignant
cells was scored for each TMA spot by a pathologist
(X.Z.) blinded to clinical parameters. Cytoplasm and nu-
clei were evaluated separately. As described previously,
immunostaining was assessed using a score calculated
by multiplying staining intensity (0 for no staining, 1 for
light/weak staining, and 2 for strong/intense staining) by
the corresponding percentage of cells staining positive at
each intensity (totaling to 100 %) [27]. Tissue spots that
were missing, damaged, contained staining artifacts, or
had uncertain histology were excluded from the analysis.
Raw data for pathologist visual scores are included in
Additional file 1.

Slide digitization, annotation, and immunohistochemical
quantification
For digital image analysis, TMA whole slide images were
obtained at 40x magnification (0.0625 μm2/pixel) with a
ScanScope CS (Aperio ePathology, Leica Biosystems
Imaging, Vista, CA) and Genie Histology Pattern
Recognition software (Aperio) was trained to classify
tissues into Image Classes (tumor, stroma, and glass)
as previously described [11]. ERβ2 staining in total
malignant epithelial areas was quantified using the
Color Deconvolution algorithm (Aperio) as the prod-
uct of staining intensity (average optical density [OD]
units) multiplied by the percentage of tumor epithe-
lium with positive staining (denoted as AvgOD*%Pos).
Cytoplasmic staining of ERβ2 within tumor epithe-
lium was quantified using the Cytoplasmic algorithm
(Aperio) as the product of staining intensity multi-
plied by the percentage of tumor epithelium with positive
cytoplasmic staining (denoted as AvgCytoOD*%PosCyto).

Similarly, nuclear staining was summarized as the average
staining intensity within nuclei of tumor epithelium multi-
plied by the percentage of positive nuclei in tumor
epithelium (denoted as AvgNuclearOD*%PosNuclei).
These metrics have been previously described [11, 28, 33].
The amount of staining present is linearly related to
OD [34].

Reproducibility study
A blinded reproducibility study (Analysis Run B) was
performed by the same pathologist (X.Z.) who rescored
the TMAs using the above protocol (time period of
24 months between initial and repeat scoring). Similarly,
the scientist who originally quantified the TMAs re-
annotated the TMA spots, retrained the Genie Histology
Pattern Recognition software, and reanalyzed the TMAs
using the Cytoplasmic and Nuclear algorithms (time
period of 10 months between initial and repeat scoring).
Raw data for the digital image analyses are included in
Additional file 1.

Statistical analysis
ERβ2 IHC staining was evaluated by digital image
analysis and pathologist visual scoring for comparison
of quantification methods. The average score across
duplicate spots was calculated for each case within
each of the two Analysis Runs A and B. The associ-
ation between pathologist scores and digital measures
(AvgCytoOD*%PosCyto or AvgNuclearOD*%PosNuclei)
was determined within and across Analysis Runs (A
and B) using Spearman’s correlation coefficients, and
point estimates and 95 % confidence intervals are
presented. P-values represent a test of whether the
correlation coefficients are statistically significantly
different than 0 (no correlation). Associations of ERβ2
(quantified by image analysis confined to tumor cyto-
plasm, tumor nuclei, or total malignant epithelial
areas) and PCa outcomes (recurrence-free survival
[RFS] and prostate cancer-specific mortality [PCSM])
were evaluated using Kaplan-Meier analysis and the
log-rank test. Image analysis methods were evaluated
using Cox regression models adjusted for age at diag-
nosis (continuous), Gleason score (≤6, 7[3 + 4], 7[4 + 3],
and ≥8), pathologic stage (local: pT2, N0/NX, M0; re-
gional: pT3/pT4 or N1-3, M0), and diagnostic pre-
operative PSA level. Hazard ratios (HRs) and 95 %
confidence intervals (CIs) were reported. A two-tailed
p-value of <0.05 was considered statistically significant.

Results
Immunohistochemical staining
ERβ2 was evaluated by IHC on the PCa patient cohort
TMAs. In PCa tissue, ERβ2 displayed variable nuclear
staining and variable finely granular cytoplasmic staining,
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both in malignant epithelial cells and in fibromuscular
stromal cells (Fig. 1). In normal prostate tissue, ERβ2 dis-
played cytoplasmic staining in basal and luminal epithelial
cells, agreeing with previously reported specificity and
localization [29].

Correlation of digital image analysis and pathologist
visual scoring
Figure 1 demonstrates the workflow for digital image
analysis (annotation, automated tissue classification,
and image analysis). The digital image analysis process
required approximately 1 min of a technician’s time for
analysis of each TMA spot (under pathologist supervision)
while the visual scoring process required approximately
1 min of a pathologist’s time for analysis of each TMA
spot.
Patients were represented in duplicate on the TMAs.

Therefore we first compared the correlation of patient
replicates to each other (within an Analysis Run). As
shown in Table 1, the correlations between replicates

were similar for both Analysis Runs A and B, and were
higher for digital IHC measures (0.84 and 0.84 in tumor
cytoplasmic areas in Analysis Runs A and B, respectively;
and 0.85 and 0.84 in tumor nuclear areas in Analysis
Runs A and B, respectively) compared to pathologist
scores (0.72 and 0.71 in tumor cytoplasmic areas in
Analysis Runs A and B, respectively; and 0.64 and 0.62
in tumor nuclear areas in Analysis Runs A and B,

Fig. 1 Image analysis workflow for immunohistochemical staining quantification. a-d Prostate cancer tissue microarrays were stained by
immunohistochemistry (IHC). Various staining qualities are highlighted. e-h Genie Histology Pattern Recognition software (Aperio) subclassified
tumor areas into malignant epithelium (dark blue), stroma (yellow), and glass (cyan). i-l Within malignant epithelial areas, cell-based digital image
analysis separately quantified cytoplasmic and nuclear staining within malignant epithelium using the Cytoplasmic algorithm (Aperio). Cytoplasmic
staining intensities are pseudocolored for negative cytoplasmic (yellow), weak cytoplasmic (orange), medium cytoplasmic (dark orange), and strong
cytoplasmic (red) staining. Nuclear staining intensities are pseudocolored for negative nuclear (cyan), weak nuclear (light blue), medium nuclear (blue),
and strong nuclear (dark blue) staining. m-p Within malignant epithelial areas, area-based digital image analysis quantified total malignant epithelial
area staining using the Color Deconvolution algorithm (Aperio). Area-based staining intensities are pseudocolored for negative (blue), weak (yellow),
medium (orange), and strong (red) staining. Scale bars represent 50 μm

Table 1 Spearman correlation and 95 % confidence interval
between two TMA replicates for each patient by Analysis Run

Correlation (95 % CI)

Digital IHC OD*%Pos Analysis Run A Analysis Run B

Cytoplasm 0.84 (0.81–0.86) 0.84 (0.81–0.86)

Nuclei 0.85 (0.82–0.87) 0.84 (0.81–0.87)

Pathologist Visual Score

Cytoplasm 0.72 (0.68–0.76) 0.71 (0.66–0.75)

Nuclei 0.64 (0.59–0.69) 0.62 (0.57–0.68)
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respectively). Both methods had relatively high correl-
ation, indicating that replicates within a patient were
similar. Since IHC evaluation is often performed for
linking to outcome data on a per-patient level, these
high correlations provided a rationale for averaging pa-
tient data together when comparing quantification
methods. When quantification methods were directly
compared (patient replicates averaged together), there
was a weak/moderate correlation between digital IHC
measures and pathology scores of tumor nuclei (Analysis
Run A: 0.42 (0.34–0.49), p < 0.0001; and Analysis Run B:
0.41 (0.34–0.48), p < 0.0001; Fig. 2), and a moderate/
strong correlation between digital IHC measures and
pathology scores of tumor cytoplasm (Analysis Run A:
0.70 (0.65–0.74), p < 0.0001; and Analysis Run B: 0.69
(0.64–0.74), p < 0.0001; Fig. 3).

Reproducibility of quantification methods
To assess the reproducibility of these methods, we per-
formed a second independent analysis of the ERβ2
stained TMAs (Analysis Run B). Comparing data be-
tween Analysis Runs A and B, there was a high correl-
ation between pathologist visual scores generated for
individual TMA spots (0.84 for tumor cytoplasmic areas
and 0.83 for tumor nuclear areas for Analysis Runs A
and B, respectively), and very high correlation between
digital IHC measures generated for individual TMA
spots (0.99 for tumor cytoplasmic areas and 0.99 for
tumor nuclear areas for Analysis Runs A and B, respect-
ively) as shown in Table 2.

Outcomes analysis
Select characteristics from the PCa TMA patient cohort
are described in Table 3. A total of 508 subjects met

eligibility criteria and had suitable tissue available for
analysis on the TMA. The mean age at the time of
radical prostatectomy was 59.0 years and the median
pre-operative diagnostic PSA was 5.9 ng/mL (IQR:
4.6, 9.0). Out of 508 patients, 111 men (21.9 %) expe-
rienced PCa recurrence, including 14 men (2.76 %)
who died of PCa.
Kaplan-Meier analysis demonstrated that ERβ2 quanti-

fied by total malignant epithelial area image analysis
was borderline associated with time to recurrence in
univariate analysis (p = 0.057; Table 4 and Fig. 4).
ERβ2 quantified separately by cytoplasmic image ana-
lysis and nuclear image analysis were not significantly
associated with time to recurrence in univariate or
multivariate analysis (adjusted for clinicopathologic
features including age at diagnosis, Gleason score,
pathologic stage, and diagnostic PSA level; Table 4
and Fig. 4).
In the univariate analysis of survival, ERβ2 staining

was significantly associated with increased risk of
PCSM when quantified by cytoplasmic image analysis
(HR for each tertile increase = 2.16, 95 % CI 1.02–
4.57, p = 0.045), nuclear image analysis (HR 2.67,
95 % CI 1.20–5.96, p = 0.016), and total malignant
epithelial area analysis (HR 5.10, 95 % CI 1.70–15.34,
p = 0.004). After adjusting for age at diagnosis, Gleason
score, pathologic stage, and diagnostic PSA level, ERβ2
staining was significantly associated with increased risk of
PCSM when quantified by total malignant epithelial area
image analysis (HR 4.08, 95 % CI 1.37–12.15, p = 0.012).
We did observe a borderline significant association with
increased risk of PCSM when ERβ2 staining was quanti-
fied by nuclear image analysis (HR 2.32, 95 % CI 0.99–
5.41, p = 0.052).

Fig. 2 Correlation between digital image analysis and pathologist visual scoring of tumor nuclei. Scatter plots of nuclear data generated using
digital image analysis (AvgNuclearOD*%PosNuclei) versus pathologist visual scores. Data were averaged across tissue microarray replicates for
each patient for Analysis Run A (left) and Analysis Run B (right)
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Discussion
The long-term aims of our studies are to examine the
association of PCa biomarkers with outcomes at the pa-
tient level. Traditionally, we and others in our field have
used pathologist visual scoring, which has been shown
to have good to excellent intra- and inter-pathologist
reproducibility [4, 6, 35]. However, approximations of
positive-staining area has only poor to good pathologist
reproducibility [6], highlighting the need for improved
methods. Although we have demonstrated that the
digital image analysis process takes similar quantities of
time to complete compared to visual scoring for the
current analysis, digital image analysis can be completed
by a technician supervised by a pathologist, whereas
visual scoring requires significantly more pathologist
time. In this study, pathologist time for supervision of
the digital image analysis required approximately 10-
fold less pathologist time versus visual scoring of the
TMAs, similar to our previously published findings
[11]. Pathologist availability and efficiency limits visual
scoring approaches, especially for large studies [36, 37].
Although we have not evaluated inter-observer path-
ologist reproducibility in this study, this is another

important source of error and thus inter-pathologist
and inter-scientist reproducibility studies warrant fur-
ther investigation.
An initial finding in this study was that the correlation

between patient replicate TMA spots was higher for
digital IHC measures (in both tumor cytoplasmic and
nuclear areas) compared to pathologist scores. These
data held up across two independent Analysis Runs
and raise an interesting discussion point for tumor

Fig. 3 Correlation between digital image analysis and pathologist visual scoring of tumor cytoplasm. Scatter plots of cytoplasmic data generated
using digital image analysis (AvgCytoOD*%PosCyto) versus pathologist visual scores. Data were averaged across tissue microarray replicates for
each patient for Analysis Run A (left) and Analysis Run B (right)

Table 2 Spearman correlation and 95 % confidence interval
between Analysis Run A and B for the same TMA spot

Digital IHC OD*%Pos Correlation (95 % CI)

Cytoplasm 0.99 (0.986–0.990)

Nuclei 0.99 (0.992–0.995)

Pathologist Visual Score

Cytoplasm 0.84 (0.82–0.87)

Nuclei 0.83 (0.80–0.85)

Table 3 Characteristics of prostate cancer patients on the
tumor tissue microarrays

Variable Patients (n = 508)

Median age (IQR) 59.0 (53.0, 63.0)

Gleason grade

≤ 6 241

7 (3 + 4) 187

7 (4 + 3) 43

≥ 8 37

Pathologic stage

Local 344

Regional 164

Median diagnostic PSA (ng/mL; IQR) 5.9 (4.6, 9.0)

Recurrence status

No 300

Yes 111

Vital status

Alive 417

Prostate cancer-specific death 14

Other cause of death 71

Rizzardi et al. Diagnostic Pathology  (2016) 11:63 Page 6 of 11



heterogeneity and its relation to outcome. High cor-
relation between patient replicate TMA spots in our
study conforms to prior research indicating that a
relatively small number of cores adequately represent
the tumor, although this is highly dependent on the
antigen being evaluated [38]. In PCa specifically, a 12
biomarker signature has demonstrated high correl-
ation between patient replicate TMA spots of varying
tumor grades indicating that expression of the signa-
ture in either high or low Gleason grade similarly in-
formed outcome [39, 40]. Other tumor types may
have a higher degree of molecular heterogeneity, and
this may contribute to outcome. For example, melan-
oma tumor cells distant from vasculature demonstrate
altered expression of numerous hypoxia-related genes,
and potentially react to these localized environments in
ways that may be critical for disease aggressiveness [41].
Similar experiments in breast and rectal cancer demon-
strate distinct expression patterns at the leading/invasive
edges of tumor compared with trailing/center portions, a
phenomenon referred to as a “prairie fire” antigen distri-
bution [42, 43]. These data demonstrate that genetic and
histopathologic spatial heterogeneity may be reflected in
the biologic behavior of cells within distinct tumor areas.
Additional studies directly exploring the relationship be-
tween heterogeneity of tumor biomarker expression and
outcome are needed.
One previous study in PCa identifies a high correl-

ation between digital analysis and ordinal pathologist
scores of ERG, SLC45A3, and TMPRSS2 IHC [25].
However, continuous data allows the use of statistical
methods more suitable to identifying IHC cut-points
of biomarkers with prognostic relevance [2, 7–9]. For

this reason, pathology studies have developed semi-
quantitative scoring methods [26, 27]. However,
multiplying ordinal by continuous data does not pro-
duce a true continuous variable but rather a quasi-
continuous variable. Problems with quasi-continuous
scoring systems are exemplified by Rimm et al. who
showed bimodal distribution of pathologist visual
scoring due to over-calling of very weak staining as
“negative” rather than recognizing the weaker staining
which often displays the most variability when quanti-
tatively evaluated [2]. Ideally, much research would
move in the direction of truly quantitative methods
where staining intensity (perhaps detected using fluor-
escence methods that have wider dynamic ranges than
IHC assays) is reflected on a standard curve of controls
with biochemically known target antigen quantity [44].
Schade et al. previously demonstrated that pathologist

visual scoring of separate nuclear (intense only) and
cytoplasmic (intense only) ERβ2 immunohistochemical
staining was associated with a higher risk of PCSM in
the same PCa cohort evaluated in the current study [30].
Here, we extended this work by assessing the association
between ERβ2 quantified by multiple image analysis
methods with PCa outcomes, and identified a significant
association with PCSM when ERβ2 was quantified by
total malignant epithelial area, and identified a border-
line significant association with PCSM when ERβ2 was
quantified by nuclear-only staining after adjusting for
multiple clinicopathologic factors similar to our previous
report [30]. While we observed a significant association
with PCSM when ERβ2 was quantified by cytoplasmic
image analysis in univariate analysis, this result did not
remain significant after adjusting for clinicopathologic
factors.
Our current findings build upon the work by

Schade et al. showing that ERβ2 is associated with
adverse outcomes. However, it is unclear why we
found that data obtained by pathologist visual scoring,
versus data obtained from the same slides using
digital image analysis, yielded slightly different associ-
ations with patient outcome metrics (RFS and PCSM).
It is possible that low level staining that is present
and quantifiable by digital methods, may be inter-
preted as “negative” by a pathologist relying on visual
interpretation of staining intensity [44], resulting in
misclassification. Relatively little is published in this
area, with some groups suggesting that digital data re-
sult in higher associations than visual scoring with
outcome metrics [10, 45] and one instance describing
a lower association with digital data [46]. Further
work, out of scope for the present study, is required
to identify factors that may underlie differences of
visual versus digital image analysis data and their cor-
relation with outcome metrics.

Table 4 Hazard ratios (HRs) of PCa recurrent free survival and
PCa-specific mortality after radical prostatectomy by ERβ2
staining in tumor epithelium quantified by image analysis (per
tertile increment)

RFS PCSM

HR (95 % CI) p-value HR (95 % CI) p-value

Cytoplasmic Digital IHC (CytoOD*%PosCyto)

Univariate 1.07 (0.85, 1.34) 0.561 2.16 (1.02, 4.57) 0.045

Multivariate a 1.06 (0.84, 1.33) 0.624 1.98 (0.93, 4.21) 0.075

Nuclear Digital IHC (NucOD*%PosNuc)

Univariate 1.11 (0.89, 1.40) 0.352 2.67 (1.20, 5.96) 0.016

Multivariate a 1.00 (0.79, 1.27) 0.999 2.32 (0.99, 5.41) 0.052

Total Malignant Epithelial Area Digital IHC (OD*%Pos)

Univariate 1.25 (0.99, 1.57) 0.057 5.10 (1.70, 15.34) 0.004

Multivariate a 1.19 (0.94, 1.51) 0.150 4.08 (1.37, 12.15) 0.012
a Adjusted for age at diagnosis (years), Gleason score (≤6, 7[3 + 4], 7[4 + 3], and
≥8), pathological stage (local: pT2, N0/NX, M0; regional: pT3/pT4 or N1-3, M0),
and diagnostic PSA level (1 unit increase)
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Fig. 4 (See legend on next page.)
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Conclusions
Our study, to our knowledge, is the first to assess both
reproducibility of pathology visual data and reproducibil-
ity of digital methods in the same pathology data set.
We demonstrated that digital methods are extremely
reproducible across two Analysis Runs which involved
re-annotation of tissues, retraining of a pattern recogni-
tion algorithm to identify tumor epithelium, and reeval-
uation and compilation of data. We conclude that
computer-aided methods may produce improved data-
sets and lead to higher quality and more reproducible
research, especially in studies involving large sample
sizes.

Additional file

Additional file 1: Raw data for pathologist visual scores. (XLSX 120 kb)
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Fig. 4 Probability of PCa RFS and PCSM for ERβ2 staining quantified by image analysis. Kaplan-Meier plot for PCa recurrence-free survival using
tertiles of ERβ2 intensity quantified by the Cytoplasm algorithm (Aperio) confined to tumor cytoplasm (a), tumor nuclei (c), or by the Color
Deconvolution algorithm (Aperio) for area-based quantification confined to tumor cells including cytoplasm and nuclear staining (e). Kaplan-
Meier plot for PCa-specific survival using tertiles of ERβ2 intensity quantified by the Cytoplasm algorithm (Aperio) confined to tumor cytoplasm
(b), tumor nuclei (d), or by the Color Deconvolution algorithm (Aperio) for area-based quantification confined to tumor cells including cytoplasm
and nuclear staining (f)
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